These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27501272)

  • 21. Evolution of flowering time in experimental wheat populations: a comprehensive approach to detect genetic signatures of natural selection.
    Rhoné B; Vitalis R; Goldringer I; Bonnin I
    Evolution; 2010 Jul; 64(7):2110-25. PubMed ID: 20148950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Standing genetic variation in FRIGIDA mediates experimental evolution of flowering time in Arabidopsis.
    Scarcelli N; Kover PX
    Mol Ecol; 2009 May; 18(9):2039-49. PubMed ID: 19317844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Responses to selection on male-phase duration in Chamerion angustifolium.
    Routley MB; Husband BC
    J Evol Biol; 2005 Jul; 18(4):1050-9. PubMed ID: 16033578
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular population genetics of redundant floral-regulatory genes in Arabidopsis thaliana.
    Moore RC; Grant SR; Purugganan MD
    Mol Biol Evol; 2005 Jan; 22(1):91-103. PubMed ID: 15371526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measuring and comparing evolvability and constraint in multivariate characters.
    Hansen TF; Houle D
    J Evol Biol; 2008 Sep; 21(5):1201-19. PubMed ID: 18662244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studying genetics of adaptive variation in model organisms: flowering time variation in Arabidopsis lyrata.
    Riihimäki M; Podolsky R; Kuittinen H; Koelewijn H; Savolainen O
    Genetica; 2005 Feb; 123(1-2):63-74. PubMed ID: 15881681
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Six new recombinant inbred populations for the study of quantitative traits in Arabidopsis thaliana.
    O'Neill CM; Morgan C; Kirby J; Tschoep H; Deng PX; Brennan M; Rosas U; Fraser F; Hall C; Gill S; Bancroft I
    Theor Appl Genet; 2008 Mar; 116(5):623-34. PubMed ID: 18193187
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of causal networks on the structure and stability of resource allocation trait correlations.
    Gove RP; Chen W; Zweber NB; Erwin R; Rychtář J; Remington DL
    J Theor Biol; 2012 Jan; 293():1-14. PubMed ID: 22004994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selection for population-specific adaptation shaped patterns of variation in the photoperiod pathway genes in Arabidopsis lyrata during post-glacial colonization.
    Mattila TM; Aalto EA; Toivainen T; Niittyvuopio A; Piltonen S; Kuittinen H; Savolainen O
    Mol Ecol; 2016 Jan; 25(2):581-97. PubMed ID: 26600237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Floral size and shape evolution following the transition to gender dimorphism.
    Kamath A; Levin RA; Miller JS
    Am J Bot; 2017 Mar; 104(3):451-460. PubMed ID: 28298376
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selection for character displacement is constrained by the genetic architecture of floral traits in the ivyleaf morning glory.
    Smith RA; Rausher MD
    Evolution; 2008 Nov; 62(11):2829-41. PubMed ID: 18752615
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pleiotropy in developmental regulation by flowering-pathway genes: is it an evolutionary constraint?
    Auge GA; Penfield S; Donohue K
    New Phytol; 2019 Oct; 224(1):55-70. PubMed ID: 31074008
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Context-dependency of resource allocation trade-offs highlights constraints to the evolution of floral longevity in a monocarpic herb.
    Spigler RB; Woodard AJ
    New Phytol; 2019 Mar; 221(4):2298-2307. PubMed ID: 30256414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid divergence of genetic variance-covariance matrix within a natural population.
    Doroszuk A; Wojewodzic MW; Gort G; Kammenga JE
    Am Nat; 2008 Mar; 171(3):291-304. PubMed ID: 18271724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The constancy of the G matrix through species divergence and the effects of quantitative genetic constraints on phenotypic evolution: a case study in crickets.
    Bégin M; Roff DA
    Evolution; 2003 May; 57(5):1107-20. PubMed ID: 12836827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relation among plant growth, carbohydrates and flowering time in the Arabidopsis Landsberg erecta x Kondara recombinant inbred line population.
    El-Lithy ME; Reymond M; Stich B; Koornneef M; Vreugdenhil D
    Plant Cell Environ; 2010 Aug; 33(8):1369-82. PubMed ID: 20374533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Environmental and genetic interactions reveal FLOWERING LOCUS C as a modulator of the natural variation for the plasticity of flowering in Arabidopsis.
    Méndez-Vigo B; Savic M; Ausín I; Ramiro M; Martín B; Picó FX; Alonso-Blanco C
    Plant Cell Environ; 2016 Feb; 39(2):282-94. PubMed ID: 26173848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and stability of genetic variance-covariance matrices: A Bayesian sparse factor analysis of transcriptional variation in the three-spined stickleback.
    Siren J; Ovaskainen O; Merilä J
    Mol Ecol; 2017 Oct; 26(19):5099-5113. PubMed ID: 28746754
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting evolution of floral traits associated with mating system in a natural plant population.
    Kleunen M; Ritland K
    J Evol Biol; 2004 Nov; 17(6):1389-99. PubMed ID: 15525423
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of flower size.
    Krizek BA; Anderson JT
    J Exp Bot; 2013 Apr; 64(6):1427-37. PubMed ID: 23404902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.