These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

946 related articles for article (PubMed ID: 27501285)

  • 1. Implementation of a Coherent Anti-Stokes Raman Scattering (CARS) System on a Ti:Sapphire and OPO Laser Based Standard Laser Scanning Microscope.
    Mytskaniuk V; Bardin F; Boukhaddaoui H; Rigneault H; Tricaud N
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27501285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multimodal platform for nonlinear optical microscopy and microspectroscopy.
    Chen H; Wang H; Slipchenko MN; Jung Y; Shi Y; Zhu J; Buhman KK; Cheng JX
    Opt Express; 2009 Feb; 17(3):1282-90. PubMed ID: 19188956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual/differential coherent anti-Stokes Raman scattering module for multiphoton microscopes with a femtosecond Ti:sapphire oscillator.
    Li B; Borri P; Langbein W
    J Biomed Opt; 2013 Jun; 18(6):066004. PubMed ID: 23733020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miniaturized multimodal CARS microscope based on MEMS scanning and a single laser source.
    Murugkar S; Smith B; Srivastava P; Moica A; Naji M; Brideau C; Stys PK; Anis H
    Opt Express; 2010 Nov; 18(23):23796-804. PubMed ID: 21164724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-low timing jitter, Ti:Al2O3 synchronization for stimulated Raman scattering and pump-probe microscopy.
    Sherlock B; Saint-Jalm S; Malcolm GPA; Maker GT; Moger J
    J Biomed Opt; 2020 Jun; 25(6):1-7. PubMed ID: 32536041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of a high power Yb fiber-based laser compatible with commercial optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy.
    Hage CH; Boisset S; Ibrahim A; Morin F; Hoenninger C; Grunske T; Souissi S; Heliot L; Leray A
    Microsc Res Tech; 2014 Jun; 77(6):422-30. PubMed ID: 24710794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent Anti-Stokes Raman Scattering Spectroscopy Using a Double-Wavelength-Emission Electronically Tuned Ti:Sapphire Laser.
    Hirai N; Maeda Y; Hashimoto K; Andriana BB; Matsuyoshi H; Sato H
    Appl Spectrosc; 2021 Aug; 75(8):988-993. PubMed ID: 34041958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous hyperspectral differential-CARS, TPF and SHG microscopy with a single 5 fs Ti:Sa laser.
    Pope I; Langbein W; Watson P; Borri P
    Opt Express; 2013 Mar; 21(6):7096-106. PubMed ID: 23546091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy.
    Zhang D; Wang P; Slipchenko MN; Cheng JX
    Acc Chem Res; 2014 Aug; 47(8):2282-90. PubMed ID: 24871269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Widely-tunable synchronisation-free picosecond laser source for multimodal CARS, SHG, and two-photon microscopy.
    Xu D; Liang S; Xu L; Bourdakos KN; Johnson P; Read J; Price JHV; Mahajan S; Richardson DJ
    Biomed Opt Express; 2021 Feb; 12(2):1010-1019. PubMed ID: 33680556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Achieving molecular selectivity in imaging using multiphoton Raman spectroscopy techniques.
    Holtom GR; Thrall BD; Chin BY; Wiley HS; Colson SD
    Traffic; 2001 Nov; 2(11):781-8. PubMed ID: 11733044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue.
    Huff TB; Cheng JX
    J Microsc; 2007 Feb; 225(Pt 2):175-82. PubMed ID: 17359252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics.
    Meyer T; Baumgartl M; Gottschall T; Pascher T; Wuttig A; Matthäus C; Romeike BF; Brehm BR; Limpert J; Tünnermann A; Guntinas-Lichius O; Dietzek B; Schmitt M; Popp J
    Analyst; 2013 Jul; 138(14):4048-57. PubMed ID: 23632421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation).
    Segawa H; Okuno M; Kano H; Leproux P; Couderc V; Hamaguchi HO
    Opt Express; 2012 Apr; 20(9):9551-7. PubMed ID: 22535046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible and stable optical parametric oscillator based laser system for coherent anti-Stokes Raman scattering microscopy.
    Zhang W; Parsons M; McConnell G
    Microsc Res Tech; 2010 Jun; 73(6):650-6. PubMed ID: 19941296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Portable, miniaturized, fibre delivered, multimodal CARS exoscope.
    Smith B; Naji M; Murugkar S; Alarcon E; Brideau C; Stys P; Anis H
    Opt Express; 2013 Jul; 21(14):17161-75. PubMed ID: 23938563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitation parameters optimized for coherent anti-Stokes Raman scattering imaging of myelinated tissue.
    Brideau C; Poon KWC; Colarusso P; Stys PK
    J Biomed Opt; 2019 Apr; 24(4):1-8. PubMed ID: 31007003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherent anti-stokes Raman scattering microscopy: a biological review.
    Rodriguez LG; Lockett SJ; Holtom GR
    Cytometry A; 2006 Aug; 69(8):779-91. PubMed ID: 16752420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Live cell imaging with chemical specificity using dual frequency CARS microscopy.
    Pope I; Langbein W; Borri P; Watson P
    Methods Enzymol; 2012; 504():273-91. PubMed ID: 22264540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular composition and orientation in myelin figures characterized by coherent anti-stokes Raman scattering microscopy.
    Kennedy AP; Sutcliffe J; Cheng JX
    Langmuir; 2005 Jul; 21(14):6478-86. PubMed ID: 15982056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.