BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 27501421)

  • 1. Moss and lichen biomonitoring of atmospheric mercury: A review.
    Bargagli R
    Sci Total Environ; 2016 Dec; 572():216-231. PubMed ID: 27501421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atmospheric chemistry of mercury in Antarctica and the role of cryptogams to assess deposition patterns in coastal ice-free areas.
    Bargagli R
    Chemosphere; 2016 Nov; 163():202-208. PubMed ID: 27529384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of plants for biomonitoring of airborne mercury in contaminated areas.
    Lodenius M
    Environ Res; 2013 Aug; 125():113-23. PubMed ID: 23472606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and speciation of mercury in mosses and lichens from the high-altitude Tibetan Plateau.
    Shao JJ; Liu CB; Zhang QH; Fu JJ; Yang RQ; Shi JB; Cai Y; Jiang GB
    Environ Geochem Health; 2017 Jun; 39(3):475-482. PubMed ID: 27142761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative use of lichens, mosses and tree bark to evaluate nitrogen deposition in Germany.
    Boltersdorf SH; Pesch R; Werner W
    Environ Pollut; 2014 Jun; 189():43-53. PubMed ID: 24631972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury accumulation efficiency of different biomonitors in indoor environments: the case study of the Central Italian Herbarium (Florence, Italy).
    Ciani F; Fornasaro S; Benesperi R; Bianchi E; Cabassi J; Di Nuzzo L; Grifoni L; Venturi S; Costagliola P; Rimondi V
    Environ Sci Pollut Res Int; 2023 Dec; 30(59):124232-124244. PubMed ID: 37999838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lichen transplants as indicators of gaseous elemental mercury concentrations.
    Monaci F; Ancora S; Paoli L; Loppi S; Wania F
    Environ Pollut; 2022 Nov; 313():120189. PubMed ID: 36116569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring temporal trends of air pollution in an urban area using mosses and lichens as biomonitors.
    Gerdol R; Marchesini R; Iacumin P; Brancaleoni L
    Chemosphere; 2014 Aug; 108():388-95. PubMed ID: 24630254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of spatial and temporal metal atmospheric deposition in France through lichen and moss bioaccumulation over one century.
    Agnan Y; Séjalon-Delmas N; Claustres A; Probst A
    Sci Total Environ; 2015 Oct; 529():285-96. PubMed ID: 26026488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced deposition and bioaccumulation of mercury in Antarctic terrestrial ecosystems facing a coastal polynya.
    Bargagli R; Agnorelli C; Borghini F; Monaci F
    Environ Sci Technol; 2005 Nov; 39(21):8150-5. PubMed ID: 16294848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of active measurements, lichen biomonitoring, and passive sampling for atmospheric mercury monitoring.
    Gačnik J; Živković I; Kotnik J; Božič D; Tassone A; Naccarato A; Pirrone N; Sprovieri F; Steffen A; Horvat M
    Environ Sci Pollut Res Int; 2024 May; 31(24):35800-35810. PubMed ID: 38740686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terrestrial mosses as biomonitors of atmospheric POPs pollution: a review.
    Harmens H; Foan L; Simon V; Mills G
    Environ Pollut; 2013 Feb; 173():245-54. PubMed ID: 23202982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of epigeic moss (Hypnum cupressiforme) and lichen (Cladonia rangiformis) as biomonitor species of atmospheric metal deposition.
    Coskun M; Steinnes E; Coskun M; Cayir A
    Bull Environ Contam Toxicol; 2009 Jan; 82(1):1-5. PubMed ID: 18592121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomonitoring of environmental pollution in the vicinity of iron and steel smelters in southwestern Nigeria using transplanted lichens and mosses.
    Olise FS; Ogundele LT; Olajire MA; Owoade OK; Oloyede FA; Fawole OG; Ezeh GC
    Environ Monit Assess; 2019 Oct; 191(11):691. PubMed ID: 31667628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of airborne trace elements in mosses, lichens and synthetic materials exposed at urban monitoring stations: towards a harmonisation of the moss-bag technique.
    Giordano S; Adamo P; Spagnuolo V; Tretiach M; Bargagli R
    Chemosphere; 2013 Jan; 90(2):292-9. PubMed ID: 22901434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating atmospheric mercury concentrations with lichens.
    Vannini A; Nicolardi V; Bargagli R; Loppi S
    Environ Sci Technol; 2014; 48(15):8754-9. PubMed ID: 24971640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland.
    Kłos A; Ziembik Z; Rajfur M; Dołhańczuk-Śródka A; Bochenek Z; Bjerke JW; Tømmervik H; Zagajewski B; Ziółkowski D; Jerz D; Zielińska M; Krems P; Godyń P; Marciniak M; Świsłowski P
    Sci Total Environ; 2018 Jun; 627():438-449. PubMed ID: 29426166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses--a review.
    Augusto S; Máguas C; Branquinho C
    Environ Pollut; 2013 Sep; 180():330-8. PubMed ID: 23768993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial distribution of mercury and other potentially toxic elements using epiphytic lichens in Nova Scotia.
    Klapstein SJ; Walker AK; Saunders CH; Cameron RP; Murimboh JD; O'Driscoll NJ
    Chemosphere; 2020 Feb; 241():125064. PubMed ID: 31683434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of air pollution by mercury in South African provinces using lichens Parmelia caperata as bioindicators.
    Panichev N; Mokgalaka N; Panicheva S
    Environ Geochem Health; 2019 Oct; 41(5):2239-2250. PubMed ID: 30915596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.