BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 27501442)

  • 1. An improved non-Cartesian partially parallel imaging by exploiting artificial sparsity.
    Chen Z; Xia L; Liu F; Wang Q; Li Y; Zhu X; Huang F
    Magn Reson Med; 2017 Jul; 78(1):271-279. PubMed ID: 27501442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technical Note: Sequential combination of parallel imaging and dynamic artificial sparsity framework for rapid free-breathing golden-angle radial dynamic MRI: K-T ARTS-GROWL.
    Chen Z; Kang L; Xia L; Wang Q; Li Y; Hu X; Liu F; Huang F
    Med Phys; 2018 Jan; 45(1):202-213. PubMed ID: 29080237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential combination of k-t principle component analysis (PCA) and partial parallel imaging: k-t PCA GROWL.
    Qi H; Huang F; Zhou H; Chen H
    Magn Reson Med; 2017 Mar; 77(3):1058-1067. PubMed ID: 27016133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HF-SENSE: an improved partially parallel imaging using a high-pass filter.
    Zhang J; Chu Y; Ding W; Kang L; Xia L; Jaiswal S; Wang Z; Chen Z
    BMC Med Imaging; 2019 Apr; 19(1):27. PubMed ID: 30943909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GRAPPA operator for wider radial bands (GROWL) with optimally regularized self-calibration.
    Lin W; Huang F; Li Y; Reykowski A
    Magn Reson Med; 2010 Sep; 64(3):757-66. PubMed ID: 20806377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. K-t sparse GROWL: sequential combination of partially parallel imaging and compressed sensing in k-t space using flexible virtual coil.
    Huang F; Lin W; Duensing GR; Reykowski A
    Magn Reson Med; 2012 Sep; 68(3):772-82. PubMed ID: 22162191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly accelerated T1-weighted abdominal imaging using 2-dimensional controlled aliasing in parallel imaging results in higher acceleration: a comparison with generalized autocalibrating partially parallel acquisitions parallel imaging.
    Riffel P; Attenberger UI; Kannengiesser S; Nickel MD; Arndt C; Meyer M; Schoenberg SO; Michaely HJ
    Invest Radiol; 2013 Jul; 48(7):554-61. PubMed ID: 23462674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trajectory Auto-Corrected image reconstruction.
    Ianni JD; Grissom WA
    Magn Reson Med; 2016 Sep; 76(3):757-68. PubMed ID: 26362967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iterative GRAPPA (iGRAPPA) for improved parallel imaging reconstruction.
    Zhao T; Hu X
    Magn Reson Med; 2008 Apr; 59(4):903-7. PubMed ID: 18383282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sparse-SEMAC: rapid and improved SEMAC metal implant imaging using SPARSE-SENSE acceleration.
    Otazo R; Nittka M; Bruno M; Raithel E; Geppert C; Gyftopoulos S; Recht M; Rybak L
    Magn Reson Med; 2017 Jul; 78(1):79-87. PubMed ID: 27454003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IIR GRAPPA for parallel MR image reconstruction.
    Chen Z; Zhang J; Yang R; Kellman P; Johnston LA; Egan GF
    Magn Reson Med; 2010 Feb; 63(2):502-9. PubMed ID: 19859951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of undersampled non-Cartesian data sets using pseudo-Cartesian GRAPPA in conjunction with GROG.
    Seiberlich N; Breuer F; Heidemann R; Blaimer M; Griswold M; Jakob P
    Magn Reson Med; 2008 May; 59(5):1127-37. PubMed ID: 18429026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-pass myocardial perfusion MRI with reduced subendocardial dark-rim artifact using optimized Cartesian sampling.
    Zhou Z; Bi X; Wei J; Yang HJ; Dharmakumar R; Arsanjani R; Bairey Merz CN; Li D; Sharif B
    J Magn Reson Imaging; 2017 Feb; 45(2):542-555. PubMed ID: 27532501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-Cartesian data reconstruction using GRAPPA operator gridding (GROG).
    Seiberlich N; Breuer FA; Blaimer M; Barkauskas K; Jakob PM; Griswold MA
    Magn Reson Med; 2007 Dec; 58(6):1257-65. PubMed ID: 17969027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerated exponential parameterization of T2 relaxation with model-driven low rank and sparsity priors (MORASA).
    Peng X; Ying L; Liu Y; Yuan J; Liu X; Liang D
    Magn Reson Med; 2016 Dec; 76(6):1865-1878. PubMed ID: 26762702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rapid and robust numerical algorithm for sensitivity encoding with sparsity constraints: self-feeding sparse SENSE.
    Huang F; Chen Y; Yin W; Lin W; Ye X; Guo W; Reykowski A
    Magn Reson Med; 2010 Oct; 64(4):1078-88. PubMed ID: 20564598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple application of compressed sensing to further accelerate partially parallel imaging.
    Miao J; Guo W; Narayan S; Wilson DL
    Magn Reson Imaging; 2013 Jan; 31(1):75-85. PubMed ID: 22902065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using the GRAPPA operator and the generalized sampling theorem to reconstruct undersampled non-Cartesian data.
    Seiberlich N; Breuer FA; Ehses P; Moriguchi H; Blaimer M; Jakob PM; Griswold MA
    Magn Reson Med; 2009 Mar; 61(3):705-15. PubMed ID: 19145634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MRI artifact correction using sparse + low-rank decomposition of annihilating filter-based hankel matrix.
    Jin KH; Um JY; Lee D; Lee J; Park SH; Ye JC
    Magn Reson Med; 2017 Jul; 78(1):327-340. PubMed ID: 27464787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-polarity GRAPPA for simultaneous reconstruction and ghost correction of echo planar imaging data.
    Hoge WS; Polimeni JR
    Magn Reson Med; 2016 Jul; 76(1):32-44. PubMed ID: 26208304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.