These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27501446)

  • 1. Transcriptional Control of Developmental Cell Behaviors.
    Bernadskaya Y; Christiaen L
    Annu Rev Cell Dev Biol; 2016 Oct; 32():77-101. PubMed ID: 27501446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstructed cell fate-regulatory programs in stem cells reveal hierarchies and key factors of neurogenesis.
    Mendoza-Parra MA; Malysheva V; Mohamed Saleem MA; Lieb M; Godel A; Gronemeyer H
    Genome Res; 2016 Nov; 26(11):1505-1519. PubMed ID: 27650846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental gene regulatory networks in the zebrafish embryo.
    Chan TM; Longabaugh W; Bolouri H; Chen HL; Tseng WF; Chao CH; Jang TH; Lin YI; Hung SC; Wang HD; Yuh CH
    Biochim Biophys Acta; 2009 Apr; 1789(4):279-98. PubMed ID: 18992377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The genomic regulatory control of skeletal morphogenesis in the sea urchin.
    Rafiq K; Cheers MS; Ettensohn CA
    Development; 2012 Feb; 139(3):579-90. PubMed ID: 22190640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A core transcriptional network composed of Pax2/8, Gata3 and Lim1 regulates key players of pro/mesonephros morphogenesis.
    Boualia SK; Gaitan Y; Tremblay M; Sharma R; Cardin J; Kania A; Bouchard M
    Dev Biol; 2013 Oct; 382(2):555-66. PubMed ID: 23920117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific functions of the Wnt signaling system in gene regulatory networks throughout the early sea urchin embryo.
    Cui M; Siriwon N; Li E; Davidson EH; Peter IS
    Proc Natl Acad Sci U S A; 2014 Nov; 111(47):E5029-38. PubMed ID: 25385617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transcription/migration interface in heart precursors of Ciona intestinalis.
    Christiaen L; Davidson B; Kawashima T; Powell W; Nolla H; Vranizan K; Levine M
    Science; 2008 Jun; 320(5881):1349-52. PubMed ID: 18535245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling transcriptional regulatory networks.
    Bolouri H; Davidson EH
    Bioessays; 2002 Dec; 24(12):1118-29. PubMed ID: 12447977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deployment of a retinal determination gene network drives directed cell migration in the sea urchin embryo.
    Martik ML; McClay DR
    Elife; 2015 Sep; 4():. PubMed ID: 26402456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global analysis of dorsoventral patterning in the wasp Nasonia reveals extensive incorporation of novelty in a regulatory network.
    Pers D; Buchta T; Özüak O; Wolff S; Pietsch JM; Memon MB; Roth S; Lynch JA
    BMC Biol; 2016 Aug; 14():63. PubMed ID: 27480122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins.
    Rafiq K; Shashikant T; McManus CJ; Ettensohn CA
    Development; 2014 Feb; 141(4):950-61. PubMed ID: 24496631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encoding anatomy: developmental gene regulatory networks and morphogenesis.
    Ettensohn CA
    Genesis; 2013 Jun; 51(6):383-409. PubMed ID: 23436627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward a systems-level understanding of developmental regulatory networks.
    Busser BW; Bulyk ML; Michelson AM
    Curr Opin Genet Dev; 2008 Dec; 18(6):521-9. PubMed ID: 18848887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental gene regulatory network evolution: insights from comparative studies in echinoderms.
    Hinman VF; Cheatle Jarvela AM
    Genesis; 2014 Mar; 52(3):193-207. PubMed ID: 24549884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-specific targeting of cell fate regulatory genes by E2f factors.
    Julian LM; Liu Y; Pakenham CA; Dugal-Tessier D; Ruzhynsky V; Bae S; Tsai SY; Leone G; Slack RS; Blais A
    Cell Death Differ; 2016 Apr; 23(4):565-75. PubMed ID: 25909886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear architecture supports integration of physiological regulatory signals for transcription of cell growth and tissue-specific genes during osteoblast differentiation.
    Stein GS; van Wijnen AJ; Stein JL; Lian JB; Bidwell JP; Montecino M
    J Cell Biochem; 1994 May; 55(1):4-15. PubMed ID: 8083299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene transcription in the zebrafish embryo: regulators and networks.
    Ferg M; Armant O; Yang L; Dickmeis T; Rastegar S; Strähle U
    Brief Funct Genomics; 2014 Mar; 13(2):131-43. PubMed ID: 24152666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Networks and hubs for the transcriptional control of osteoblastogenesis.
    Lian JB; Stein GS; Javed A; van Wijnen AJ; Stein JL; Montecino M; Hassan MQ; Gaur T; Lengner CJ; Young DW
    Rev Endocr Metab Disord; 2006 Jun; 7(1-2):1-16. PubMed ID: 17051438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimentally based sea urchin gene regulatory network and the causal explanation of developmental phenomenology.
    Ben-Tabou de-Leon S; Davidson EH
    Wiley Interdiscip Rev Syst Biol Med; 2009; 1(2):237-246. PubMed ID: 20228891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA: basic mechanisms and transcriptional regulatory networks for cell fate determination.
    Fazi F; Nervi C
    Cardiovasc Res; 2008 Sep; 79(4):553-61. PubMed ID: 18539629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.