BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 27501475)

  • 1. Comparative performance of oral midazolam clearance and plasma 4β-hydroxycholesterol to explain interindividual variability in tacrolimus clearance.
    Vanhove T; de Jonge H; de Loor H; Annaert P; Diczfalusy U; Kuypers DR
    Br J Clin Pharmacol; 2016 Dec; 82(6):1539-1549. PubMed ID: 27501475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pretransplant 4β-hydroxycholesterol does not predict tacrolimus exposure or dose requirements during the first days after kidney transplantation.
    Vanhove T; Hasan M; Annaert P; Oswald S; Kuypers DRJ
    Br J Clin Pharmacol; 2017 Nov; 83(11):2406-2415. PubMed ID: 28603840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of CYP3A4*22 allele on tacrolimus pharmacokinetics in early period after renal transplantation: toward updated genotype-based dosage guidelines.
    Elens L; Capron A; van Schaik RH; De Meyer M; De Pauw L; Eddour DC; Latinne D; Wallemacq P; Mourad M; Haufroid V
    Ther Drug Monit; 2013 Oct; 35(5):608-16. PubMed ID: 24052064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progressive decline in tacrolimus clearance after renal transplantation is partially explained by decreasing CYP3A4 activity and increasing haematocrit.
    de Jonge H; Vanhove T; de Loor H; Verbeke K; Kuypers DR
    Br J Clin Pharmacol; 2015 Sep; 80(3):548-59. PubMed ID: 26114223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of CYP3A4*22 and CYP3A4*1B but not CYP3A5*3 polymorphisms on tacrolimus pharmacokinetic model in Tunisian kidney transplant.
    Hannachi I; Ben Fredj N; Chadli Z; Ben Fadhel N; Ben Romdhane H; Touitou Y; Boughattas NA; Chaabane A; Aouam K
    Toxicol Appl Pharmacol; 2020 Jun; 396():115000. PubMed ID: 32275916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of effects of indoxyl sulfate and parathyroid hormone on CYP3A activity considering the influence of CYP3A5 gene polymorphisms.
    Oda A; Suzuki Y; Yoshijima C; Sato H; Tanaka R; Ono H; Tatsuta R; Ando T; Shin T; Itoh H; Ohno K
    Br J Clin Pharmacol; 2023 Dec; 89(12):3648-3658. PubMed ID: 37522799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Population pharmacokinetic analysis and dosing guidelines for tacrolimus co-administration with Wuzhi capsule in Chinese renal transplant recipients.
    Jing Y; Kong Y; Hou X; Liu H; Fu Q; Jiao Z; Peng H; Wei X
    J Clin Pharm Ther; 2021 Aug; 46(4):1117-1128. PubMed ID: 33768546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Weight and CYP3A5 Genotype on the Population Pharmacokinetics of Tacrolimus in Stable Paediatric Renal Transplant Recipients.
    Prytuła AA; Cransberg K; Bouts AH; van Schaik RH; de Jong H; de Wildt SN; Mathôt RA
    Clin Pharmacokinet; 2016 Sep; 55(9):1129-43. PubMed ID: 27138785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative clinical trial of the variability factors of the exposure indices used for the drug monitoring of two tacrolimus formulations in kidney transplant recipients.
    Marquet P; Albano L; Woillard JB; Rostaing L; Kamar N; Sakarovitch C; Gatault P; Buchler M; Charpentier B; Thervet E; Cassuto E
    Pharmacol Res; 2018 Mar; 129():84-94. PubMed ID: 29229354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo CYP3A4 activity does not predict the magnitude of interaction between itraconazole and tacrolimus from an extended release formulation.
    Vanhove T; Annaert P; Knops N; de Loor H; de Hoon J; Kuypers DRJ
    Basic Clin Pharmacol Toxicol; 2019 Jan; 124(1):50-55. PubMed ID: 29989304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of MDR1 and CYP3A5 on the oral clearance of tacrolimus and tacrolimus-related renal dysfunction in adult living-donor liver transplant patients.
    Fukudo M; Yano I; Yoshimura A; Masuda S; Uesugi M; Hosohata K; Katsura T; Ogura Y; Oike F; Takada Y; Uemoto S; Inui K
    Pharmacogenet Genomics; 2008 May; 18(5):413-23. PubMed ID: 18408564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CYP3A5*3 and ABCB1 61A>G Significantly Influence Dose-adjusted Trough Blood Tacrolimus Concentrations in the First Three Months Post-Kidney Transplantation.
    Hu R; Barratt DT; Coller JK; Sallustio BC; Somogyi AA
    Basic Clin Pharmacol Toxicol; 2018 Sep; 123(3):320-326. PubMed ID: 29603629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of ABCB1, CYP3A4*18B and CYP3A5*3 genotypes with the pharmacokinetics of tacrolimus in healthy Chinese subjects: a population pharmacokinetic analysis.
    Shi XJ; Geng F; Jiao Z; Cui XY; Qiu XY; Zhong MK
    J Clin Pharm Ther; 2011 Oct; 36(5):614-24. PubMed ID: 21916909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The combination of CYP3A4*22 and CYP3A5*3 single-nucleotide polymorphisms determines tacrolimus dose requirement after kidney transplantation.
    Lloberas N; Elens L; Llaudó I; Padullés A; van Gelder T; Hesselink DA; Colom H; Andreu F; Torras J; Bestard O; Cruzado JM; Gil-Vernet S; van Schaik R; Grinyó JM
    Pharmacogenet Genomics; 2017 Sep; 27(9):313-322. PubMed ID: 28704257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Donor and Recipient
    Shao J; Wang C; Fu P; Chen F; Zhang Y; Wei J
    Ann Pharmacother; 2020 Jul; 54(7):652-661. PubMed ID: 31888346
    [No Abstract]   [Full Text] [Related]  

  • 16. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients.
    Elens L; Bouamar R; Hesselink DA; Haufroid V; van der Heiden IP; van Gelder T; van Schaik RH
    Clin Chem; 2011 Nov; 57(11):1574-83. PubMed ID: 21903774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 4β-Hydroxycholesterol, an endogenous marker of CYP3A4/5 activity in humans.
    Diczfalusy U; Nylén H; Elander P; Bertilsson L
    Br J Clin Pharmacol; 2011 Feb; 71(2):183-9. PubMed ID: 21219398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systematic review of the effect of CYP3A5 genotype on the apparent oral clearance of tacrolimus in renal transplant recipients.
    Barry A; Levine M
    Ther Drug Monit; 2010 Dec; 32(6):708-14. PubMed ID: 20864901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo CYP3A4 activity, CYP3A5 genotype, and hematocrit predict tacrolimus dose requirements and clearance in renal transplant patients.
    de Jonge H; de Loor H; Verbeke K; Vanrenterghem Y; Kuypers DR
    Clin Pharmacol Ther; 2012 Sep; 92(3):366-75. PubMed ID: 22871995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The CYP3A biomarker 4β-hydroxycholesterol does not improve tacrolimus dose predictions early after kidney transplantation.
    Størset E; Hole K; Midtvedt K; Bergan S; Molden E; Åsberg A
    Br J Clin Pharmacol; 2017 Jul; 83(7):1457-1465. PubMed ID: 28146606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.