BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 27501922)

  • 1. New Evidence That Nonlinear Source-Filter Coupling Affects Harmonic Intensity and fo Stability During Instances of Harmonics Crossing Formants.
    Maxfield L; Palaparthi A; Titze I
    J Voice; 2017 Mar; 31(2):149-156. PubMed ID: 27501922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Source-Filter Interaction Regions Based on Electroglottography.
    Palaparthi A; Maxfield L; Titze IR
    J Voice; 2019 May; 33(3):269-276. PubMed ID: 29277351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear source-filter coupling in phonation: theory.
    Titze IR
    J Acoust Soc Am; 2008 May; 123(5):2733-49. PubMed ID: 18529191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectrographic Acoustic Vocal Characteristics of Elderly Women Engaged in Aerobics.
    Colman Machado de Machado F; Lessa MM; Cielo CA; Barbosa LH
    J Voice; 2016 Sep; 30(5):579-86. PubMed ID: 26474716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation and analysis of in vivo vocal fold tissue instabilities produced by nonlinear source-filter coupling: a case study.
    Zañartu M; Mehta DD; Ho JC; Wodicka GR; Hillman RE
    J Acoust Soc Am; 2011 Jan; 129(1):326-39. PubMed ID: 21303014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formant frequency estimation of high-pitched vowels using weighted linear prediction.
    Alku P; Pohjalainen J; Vainio M; Laukkanen AM; Story BH
    J Acoust Soc Am; 2013 Aug; 134(2):1295-313. PubMed ID: 23927127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship of Various Open Quotients With Acoustic Property, Phonation Types, Fundamental Frequency, and Intensity.
    Yokonishi H; Imagawa H; Sakakibara K; Yamauchi A; Nito T; Yamasoba T; Tayama N
    J Voice; 2016 Mar; 30(2):145-57. PubMed ID: 25953586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic and EGG analyses of emotional utterances.
    Waaramaa T; Kankare E
    Logoped Phoniatr Vocol; 2013 Apr; 38(1):11-8. PubMed ID: 22587654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voice Source Variation Between Vowels in Male Opera Singers.
    Sundberg J; Lã FM; Gill BP
    J Voice; 2016 Sep; 30(5):509-17. PubMed ID: 26350698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional vocal tracts with three-dimensional behavior in the numerical generation of vowels.
    Arnela M; Guasch O
    J Acoust Soc Am; 2014 Jan; 135(1):369-79. PubMed ID: 24437777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voice production model integrating boundary-layer analysis of glottal flow and source-filter coupling.
    Kaburagi T
    J Acoust Soc Am; 2011 Mar; 129(3):1554-67. PubMed ID: 21428519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequencies, bandwidths and magnitudes of vocal tract and surrounding tissue resonances, measured through the lips during phonation.
    Hanna N; Smith J; Wolfe J
    J Acoust Soc Am; 2016 May; 139(5):2924. PubMed ID: 27250184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The "Overdrive" Mode in the "Complete Vocal Technique": A Preliminary Study.
    Sundberg J; Bitelli M; Holmberg A; Laaksonen V
    J Voice; 2017 Sep; 31(5):528-535. PubMed ID: 28347616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Influences of acoustic coupling between source and vocal tract of the Fo of oral vowels. Consequence for the study of intrinsic characteristics].
    Guérin B; Boë LJ
    Phonetica; 1980; 37(3):169-92. PubMed ID: 7422715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling source-filter interaction in belting and high-pitched operatic male singing.
    Titze IR; Worley AS
    J Acoust Soc Am; 2009 Sep; 126(3):1530. PubMed ID: 19739766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonant voice: spectral and nasendoscopic analysis.
    Smith CG; Finnegan EM; Karnell MP
    J Voice; 2005 Dec; 19(4):607-22. PubMed ID: 16301106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subglottal pressure oscillations accompanying phonation.
    Sundberg J; Scherer R; Hess M; Müller F; Granqvist S
    J Voice; 2013 Jul; 27(4):411-21. PubMed ID: 23809566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Formant Range Profile for Singers.
    Titze IR; Maxfield LM; Walker MC
    J Voice; 2017 May; 31(3):382.e9-382.e13. PubMed ID: 28029556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Acoustic Examination of Pitch Variation in Soprano Singing.
    de Souza GVS; Duarte JMT; Viegas F; Simões-Zenari M; Nemr K
    J Voice; 2020 Jul; 34(4):648.e41-648.e49. PubMed ID: 30717888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of vocal tract and subglottal resonances in producing vocal instabilities.
    Wade L; Hanna N; Smith J; Wolfe J
    J Acoust Soc Am; 2017 Mar; 141(3):1546. PubMed ID: 28372071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.