BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 27501980)

  • 1. Role of the ganSPQAB Operon in Degradation of Galactan by Bacillus subtilis.
    Watzlawick H; Morabbi Heravi K; Altenbuchner J
    J Bacteriol; 2016 Oct; 198(20):2887-96. PubMed ID: 27501980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional characterization of the galactan utilization system of Geobacillus stearothermophilus.
    Tabachnikov O; Shoham Y
    FEBS J; 2013 Feb; 280(3):950-64. PubMed ID: 23216604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the regulation of a plant polysaccharide utilization operon and its role in biofilm formation in Bacillus subtilis.
    Habib C; Yu Y; Gozzi K; Ching C; Shemesh M; Chai Y
    PLoS One; 2017; 12(6):e0179761. PubMed ID: 28617843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The
    Morabbi Heravi K; Watzlawick H; Altenbuchner J
    J Bacteriol; 2019 Aug; 201(15):. PubMed ID: 31138628
    [No Abstract]   [Full Text] [Related]  

  • 5. Bioinformatic, genetic, and biochemical evidence that some glycoside hydrolase family 42 beta-galactosidases are arabinogalactan type I oligomer hydrolases.
    Shipkowski S; Brenchley JE
    Appl Environ Microbiol; 2006 Dec; 72(12):7730-8. PubMed ID: 17056685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure of endo-beta-1,4-galactanase from Bacillus licheniformis in complex with two oligosaccharide products.
    Ryttersgaard C; Le Nours J; Lo Leggio L; Jørgensen CT; Christensen LL; Bjørnvad M; Larsen S
    J Mol Biol; 2004 Jul; 341(1):107-17. PubMed ID: 15312766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the Erwinia chrysanthemi Gan locus, involved in galactan catabolism.
    Delangle A; Prouvost AF; Cogez V; Bohin JP; Lacroix JM; Cotte-Pattat NH
    J Bacteriol; 2007 Oct; 189(19):7053-61. PubMed ID: 17644603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical characterization of a GH53 endo-β-1,4-galactanase and a GH35 exo-β-1,4-galactanase from Penicillium chrysogenum.
    Sakamoto T; Nishimura Y; Makino Y; Sunagawa Y; Harada N
    Appl Microbiol Biotechnol; 2013 Apr; 97(7):2895-906. PubMed ID: 22584433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An exo-beta-1,3-galactanase having a novel beta-1,3-galactan-binding module from Phanerochaete chrysosporium.
    Ichinose H; Yoshida M; Kotake T; Kuno A; Igarashi K; Tsumuraya Y; Samejima M; Hirabayashi J; Kobayashi H; Kaneko S
    J Biol Chem; 2005 Jul; 280(27):25820-9. PubMed ID: 15866877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of the helical structure of beta-1,4-galactan by a new family of carbohydrate-binding modules.
    Cid M; Pedersen HL; Kaneko S; Coutinho PM; Henrissat B; Willats WG; Boraston AB
    J Biol Chem; 2010 Nov; 285(46):35999-6009. PubMed ID: 20826814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro biosynthesis of 1,4-beta-galactan attached to rhamnogalacturonan I.
    Geshi N; Jørgensen B; Scheller HV; Ulvskov P
    Planta; 2000 Mar; 210(4):622-9. PubMed ID: 10787056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of an exo-ß-1,3-D-galactanase from Fusarium oxysporum and the synergistic effect with related enzymes on degradation of type II arabinogalactan.
    Okawa M; Fukamachi K; Tanaka H; Sakamoto T
    Appl Microbiol Biotechnol; 2013 Nov; 97(22):9685-94. PubMed ID: 23429923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of two fungal endo-β-1,3-galactanases and their synergistic action with an exo-β-1,3-galactanase in degrading arabinogalactan-proteins.
    Yoshimi Y; Yaguchi K; Kaneko S; Tsumuraya Y; Kotake T
    Carbohydr Res; 2017 Dec; 453-454():26-35. PubMed ID: 29121496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of a plant derived galactose-containing polysaccharide by Bifidobacterium breve UCC2003.
    O'Connell Motherway M; Fitzgerald GF; van Sinderen D
    Microb Biotechnol; 2011 May; 4(3):403-16. PubMed ID: 21375716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of the Galactanase Activity of the GanB Galactanase Protein from
    Watzlawick H
    Bio Protoc; 2017 Apr; 7(7):e2206. PubMed ID: 34541215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the rhaEWRBMA Operon Involved in l-Rhamnose Catabolism through Two Transcriptional Factors, RhaR and CcpA, in Bacillus subtilis.
    Hirooka K; Kodoi Y; Satomura T; Fujita Y
    J Bacteriol; 2015 Dec; 198(5):830-45. PubMed ID: 26712933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both sigma 54- and phosphotransferase system-dependent regulators.
    Débarbouillé M; Martin-Verstraete I; Klier A; Rapoport G
    Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2212-6. PubMed ID: 1900939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional regulation of genes encoding arabinan-degrading enzymes in Bacillus subtilis.
    Raposo MP; Inácio JM; Mota LJ; de Sá-Nogueira I
    J Bacteriol; 2004 Mar; 186(5):1287-96. PubMed ID: 14973026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids.
    Shivers RP; Sonenshein AL
    Mol Microbiol; 2004 Jul; 53(2):599-611. PubMed ID: 15228537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and characterization of an exo-1,4-beta-galactanase from a strain of Bacillus subtilis.
    Nakano H; Takenishi S; Kitahata S; Kinugasa H; Watanabe Y
    Eur J Biochem; 1990 Oct; 193(1):61-7. PubMed ID: 2121480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.