These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 27502162)

  • 1. Identifying the Leading Edge of Exceptionally Long Contaminant Plumes.
    Jackson R; Cross G
    Ground Water; 2016 Nov; 54(6):754-755. PubMed ID: 27502162
    [No Abstract]   [Full Text] [Related]  

  • 2. Dilution and volatilization of groundwater contaminant discharges in streams.
    Aisopou A; Bjerg PL; Sonne AT; Balbarini N; Rosenberg L; Binning PJ
    J Contam Hydrol; 2015 Jan; 172():71-83. PubMed ID: 25496819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of Multiple Data Assimilation Techniques in Groundwater Contaminant Transport Modeling.
    Rajib AI; Assumaning GA; Chang SY; Addai EB
    Water Environ Res; 2017 Nov; 89(11):1952-1960. PubMed ID: 29080564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of deep vadose zone contaminant flux into groundwater: Approach and case study.
    Oostrom M; Truex MJ; Last GV; Strickland CE; Tartakovsky GD
    J Contam Hydrol; 2016 Jun; 189():27-43. PubMed ID: 27107320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exceptionally Long MTBE Plumes of the Past Have Greatly Diminished.
    McDade JM; Connor JA; Paquette SM; Small JM
    Ground Water; 2015; 53(4):515-24. PubMed ID: 25691094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The new potential for understanding groundwater contaminant transport.
    Hadley PW; Newell CJ
    Ground Water; 2014; 52(5):656-8. PubMed ID: 25099820
    [No Abstract]   [Full Text] [Related]  

  • 7. The new potential for understanding groundwater contaminant transport.
    Neuman SP
    Ground Water; 2014; 52(5):653-6. PubMed ID: 25099675
    [No Abstract]   [Full Text] [Related]  

  • 8. Reaction front formation in contaminant plumes.
    Cribbin LB; Winstanley HF; Mitchell SL; Fowler AC; Sander GC
    J Contam Hydrol; 2014 Dec; 171():12-21. PubMed ID: 25461883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The new potential for understanding groundwater contaminant transport.
    Hadley PW; Newell C
    Ground Water; 2014; 52(2):174-86. PubMed ID: 24224536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential contaminant pathways from hydraulically fractured shale to aquifers.
    Cohen HA; Parratt T; Andrews CB
    Ground Water; 2013; 51(3):317-9; discussion 319-21. PubMed ID: 23323830
    [No Abstract]   [Full Text] [Related]  

  • 11. Potential contaminant pathways from hydraulically fractured shale aquifers.
    Saiers JE; Barth E
    Ground Water; 2012; 50(6):826-8; discussion 828-30. PubMed ID: 23003107
    [No Abstract]   [Full Text] [Related]  

  • 12. Educational webtool illustrating groundwater age effects on contaminant trends in wells.
    Böhlke JK; Jurgens BC; Uselmann DJ; Eberts SM
    Ground Water; 2014 Sep; 52 Suppl 1(Suppl 1):8-9. PubMed ID: 25168088
    [No Abstract]   [Full Text] [Related]  

  • 13. Comment on Exceptionally Long MTBE Plumes of the Past Have Greatly Diminished.
    Jackson R; Cross G
    Ground Water; 2016 Mar; 54(2):151-2. PubMed ID: 26709613
    [No Abstract]   [Full Text] [Related]  

  • 14. Reply to Jackson and Cross' Comment on "Exceptionally Long MTBE Plumes of the Past Have Greatly Diminished".
    McDade JM; Connor JA; Paquette SM; Small JM
    Ground Water; 2016 Mar; 54(2):153-4. PubMed ID: 26757217
    [No Abstract]   [Full Text] [Related]  

  • 15. Use of principal component analysis to profile temporal and spatial variations of chlorinated solvent concentration in groundwater.
    Lucas L; Jauzein M
    Environ Pollut; 2008 Jan; 151(1):205-12. PubMed ID: 17540487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quality and age of shallow groundwater in the Bakken Formation production area, Williston Basin, Montana and North Dakota.
    McMahon PB; Caldwell RR; Galloway JM; Valder JF; Hunt AG
    Ground Water; 2015 Apr; 53 Suppl 1():81-94. PubMed ID: 25392910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of unconventional gas development on groundwater: a call for total dissolved gas pressure field measurements.
    Roy JW; Ryan MC
    Ground Water; 2013; 51(4):480-2. PubMed ID: 23656479
    [No Abstract]   [Full Text] [Related]  

  • 18. A new ArcGIS-based software of uncertainty analysis for nitrate load estimation.
    Ye M; Rios JF; Shi L
    Ground Water; 2014; 52(5):649-50. PubMed ID: 25141919
    [No Abstract]   [Full Text] [Related]  

  • 19. Identifying the effects of human pressure on groundwater quality to support water management strategies in coastal regions: a multi-tracer and statistical approach (Bou-Areg region, Morocco).
    Re V; Sacchi E; Mas-Pla J; Menció A; El Amrani N
    Sci Total Environ; 2014 Dec; 500-501():211-23. PubMed ID: 25217996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Spatial and temporal variability of nitrate contaminant in groundwater in Jinfo Mt. area, Chongqing, China].
    Wu KY; Wang P; Shen LC; Xiao Q
    Huan Jing Ke Xue; 2011 Nov; 32(11):3247-54. PubMed ID: 22295620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.