BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27502455)

  • 1. A self-sufficient system for removal of synthetic dye by coupling of spore-displayed triphenylmethane reductase and glucose 1-dehydrogenase.
    Gao F; Ding H; Xu X; Zhao Y
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21319-21326. PubMed ID: 27502455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional display of triphenylmethane reductase for dye removal on the surface of Escherichia coli using N-terminal domain of ice nucleation protein.
    Gao F; Ding H; Feng Z; Liu D; Zhao Y
    Bioresour Technol; 2014 Oct; 169():181-187. PubMed ID: 25058292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation of triphenylmethane dyes by overexpressing a Citrobacter sp. triphenylmethane reductase in transgenic Arabidopsis.
    Fu XY; Zhao W; Xiong AS; Tian YS; Zhu B; Peng RH; Yao QH
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1799-806. PubMed ID: 22573270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of a novel thermal stable reductase capable of decoloration of both azo and triphenylmethane dyes.
    Gao F; Ding H; Shao L; Xu X; Zhao Y
    Appl Microbiol Biotechnol; 2015 Jan; 99(1):255-67. PubMed ID: 24974280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insight into bioremediation of triphenylmethane dyes by Citrobacter sp. triphenylmethane reductase.
    Kim MH; Kim Y; Park HJ; Lee JS; Kwak SN; Jung WH; Lee SG; Kim D; Lee YC; Oh TK
    J Biol Chem; 2008 Nov; 283(46):31981-90. PubMed ID: 18782772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a Robust Cofactor Self-Sufficient Bienzyme Biocatalytic System for Dye Decolorization and its Mathematical Modeling.
    Ding H; Luo W; Yu Y; Chen B
    Int J Mol Sci; 2019 Dec; 20(23):. PubMed ID: 31817029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of triphenylmethane dyes using a temperature and pH stable spore laccase from a novel strain of Bacillus vallismortis.
    Zhang C; Diao H; Lu F; Bie X; Wang Y; Lu Z
    Bioresour Technol; 2012 Dec; 126():80-6. PubMed ID: 23073092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp. isolated from compost.
    Chen SH; Yien Ting AS
    J Environ Manage; 2015 Mar; 150():274-280. PubMed ID: 25527986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of triphenylmethane dyes.
    Azmi W; Sani RK; Banerjee UC
    Enzyme Microb Technol; 1998 Feb; 22(3):185-91. PubMed ID: 9463944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of Pseudomonas otitidis WL-13 and its capacity to decolorize triphenylmethane dyes.
    Wu J; Jung BG; Kim KS; Lee YC; Sung NC
    J Environ Sci (China); 2009; 21(7):960-4. PubMed ID: 19862963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioremediation of malachite green by cyanobacterium Synechococcus elongatus PCC 7942 engineered with a triphenylmethane reductase gene.
    Han S; Han W; Chen J; Sun Y; Dai M; Zhao G
    Appl Microbiol Biotechnol; 2020 Apr; 104(7):3193-3204. PubMed ID: 32067057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decolorizing activity of malachite green and its mechanisms involved in dye biodegradation by Achromobacter xylosoxidans MG1.
    Wang J; Qiao M; Wei K; Ding J; Liu Z; Zhang KQ; Huang X
    J Mol Microbiol Biotechnol; 2011; 20(4):220-7. PubMed ID: 21865764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of malachite green by an endophytic bacterium Klebsiella aerogenes S27 involving a novel oxidoreductase.
    Shang N; Ding M; Dai M; Si H; Li S; Zhao G
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2141-2153. PubMed ID: 30613897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel small multidrug resistance protein Tmt endows the Escherichia coli with triphenylmethane dyes bioremediation capability.
    Wang Z; Zhou H; Cheng Y; An L; Yan D; Chao H; Wu J
    Biotechnol Lett; 2024 Aug; 46(4):627-639. PubMed ID: 38662307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathway and molecular mechanisms for malachite green biodegradation in Exiguobacterium sp. MG2.
    Wang J; Gao F; Liu Z; Qiao M; Niu X; Zhang KQ; Huang X
    PLoS One; 2012; 7(12):e51808. PubMed ID: 23251629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface display of organophosphorus-degrading enzymes on the recombinant spore of Bacillus subtilis.
    Song T; Wang F; Xiong S; Jiang H
    Biochem Biophys Res Commun; 2019 Feb; 510(1):13-19. PubMed ID: 30660365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic characterization of plasmid-associated triphenylmethane reductase in Listeria monocytogenes.
    Dutta V; Elhanafi D; Osborne J; Martinez MR; Kathariou S
    Appl Environ Microbiol; 2014 Sep; 80(17):5379-85. PubMed ID: 24951782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolites from the biodegradation of triphenylmethane dyes by Trametes versicolor or laccase.
    Casas N; Parella T; Vicent T; Caminal G; Sarrà M
    Chemosphere; 2009 Jun; 75(10):1344-9. PubMed ID: 19298999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IncP-1β plasmids of Comamonas sp. and Delftia sp. strains isolated from a wastewater treatment plant mediate resistance to and decolorization of the triphenylmethane dye crystal violet.
    Stolze Y; Eikmeyer F; Wibberg D; Brandis G; Karsten C; Krahn I; Schneiker-Bekel S; Viehöver P; Barsch A; Keck M; Top EM; Niehaus K; Schlüter A
    Microbiology (Reading); 2012 Aug; 158(Pt 8):2060-2072. PubMed ID: 22653947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient binding of nickel ions to recombinant Bacillus subtilis spores.
    Hinc K; Ghandili S; Karbalaee G; Shali A; Noghabi KA; Ricca E; Ahmadian G
    Res Microbiol; 2010 Nov; 161(9):757-64. PubMed ID: 20863881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.