These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27502455)

  • 21. IncP-1-beta plasmid pGNB1 isolated from a bacterial community from a wastewater treatment plant mediates decolorization of triphenylmethane dyes.
    Schlüter A; Krahn I; Kollin F; Bönemann G; Stiens M; Szczepanowski R; Schneiker S; Pühler A
    Appl Environ Microbiol; 2007 Oct; 73(20):6345-50. PubMed ID: 17675426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Construction of an integrated enzyme system consisting azoreductase and glucose 1-dehydrogenase for dye removal.
    Yang Y; Wei B; Zhao Y; Wang J
    Bioresour Technol; 2013 Feb; 130():517-21. PubMed ID: 23321587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain.
    Ren S; Guo J; Zeng G; Sun G
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1316-21. PubMed ID: 16622679
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Decolorization of indigo carmine by laccase displayed on Bacillus subtilis spores.
    Cho EA; Seo J; Lee DW; Pan JG
    Enzyme Microb Technol; 2011 Jun; 49(1):100-4. PubMed ID: 22112278
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decolorization of triphenylmethane dye-bath effluent in an integrated two-stage anaerobic reactor.
    Rai HS; Singh S; Cheema PP; Bansal TK; Banerjee UC
    J Environ Manage; 2007 May; 83(3):290-7. PubMed ID: 16814454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Comparative Study on the Rapid Decolorization of Azo, Anthraquinone and Triphenylmethane Dyes by Anaerobic Sludge.
    Cui D; Zhang H; He R; Zhao M
    Int J Environ Res Public Health; 2016 Oct; 13(11):. PubMed ID: 27801853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Efficient biosynthesis of (S)-1-phenyl-1,2-ethanediol catalyzed by (S)-carbonyl reductase Ⅱ and glucose dehydrogenase].
    Jiang J; Zhang R; Zhou X; Li K; Li J; Li Y; Xu Y
    Wei Sheng Wu Xue Bao; 2016 Oct; 56(10):1647-55. PubMed ID: 29741827
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of a quinone dehydrogenase from a Bacillus sp. involved in the decolourization of the lignin-model dye, Azure B.
    Bandounas L; Pinkse M; de Winde JH; Ruijssenaars HJ
    N Biotechnol; 2013 Jan; 30(2):196-204. PubMed ID: 22564782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biodecolourization of azo and triphenylmethane dyes by Dichomitus squalens and Phlebia spp.
    Gill PK; Arora DS; Chander M
    J Ind Microbiol Biotechnol; 2002 Apr; 28(4):201-3. PubMed ID: 11986919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Properties of a triphenylmethane dyes decolorization enzyme (TpmD) from Aeromonas hydrophila strain DN322].
    Ren SZ; Guo J; Cen YH; Sun GP
    Wei Sheng Wu Xue Bao; 2006 Oct; 46(5):823-6. PubMed ID: 17172037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pd nanoparticles supported on MIL-101/reduced graphene oxide photocatalyst: an efficient and recyclable photocatalyst for triphenylmethane dye degradation.
    Wu Y; Luo H; Zhang L
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):17238-43. PubMed ID: 26392090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of triphenylmethane dyes by Streptomyces bacillaris: A study on decolorization, enzymatic reactions and toxicity of treated dye solutions.
    Adenan NH; Lim YY; Ting ASY
    J Environ Manage; 2022 Sep; 318():115520. PubMed ID: 35717698
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biofilm formation of filamentous fungi Coriolopsis sp. on simple muslin cloth to enhance removal of triphenylmethane dyes.
    Munck C; Thierry E; Gräßle S; Chen SH; Ting ASY
    J Environ Manage; 2018 May; 214():261-266. PubMed ID: 29533823
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzymatic reduction of complex redox dyes using NADH-dependent reductase from Bacillus subtilis coupled with cofactor regeneration.
    Bozic M; Pricelius S; Guebitz GM; Kokol V
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):563-71. PubMed ID: 19662398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Properties of a triphenylmethane dyes decolorization enzyme TpmD from Aeromonas hydrophila strain DN322].
    Ren SZ; Guo J; Wang YL; Cen YH; Sun GP
    Wei Sheng Wu Xue Bao; 2006 Jun; 46(3):385-9. PubMed ID: 16933606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodegradation of hazardous triphenylmethane dye methyl violet by Rhizobium radiobacter (MTCC 8161).
    Parshetti G; Saratale G; Telke A; Govindwar S
    J Basic Microbiol; 2009 Sep; 49 Suppl 1():S36-42. PubMed ID: 19322828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anaerobic biodegradation of triphenylmethane dyes in a hybrid UASFB reactor for wastewater remediation.
    Mondal PK; Ahmad R; Usmani SQ
    Biodegradation; 2010 Nov; 21(6):1041-7. PubMed ID: 20449763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extractive biodecolorization of triphenylmethane dyes in cloud point system by Aeromonas hydrophila DN322p.
    Pan T; Ren S; Xu M; Sun G; Guo J
    Appl Microbiol Biotechnol; 2013 Jul; 97(13):6051-5. PubMed ID: 23008002
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioremediation of methylene blue dye using Bacillus subtilis MTCC 441.
    Upendar G; Dutta S; Bhattacharya P; Dutta A
    Water Sci Technol; 2017 Apr; 75(7-8):1572-1583. PubMed ID: 28402298
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface display system of Bacillus subtilis: A promising approach for improving the stability and applications of cellobiose dehydrogenase.
    Wu Z; Li P; Chen X; Feng Y; Ma Y; Ni Z; Zhu D; Chen H
    Protein Expr Purif; 2024 Jun; 218():106448. PubMed ID: 38373510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.