These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 27502563)
1. Periphyton: an important regulator in optimizing soil phosphorus bioavailability in paddy fields. Wu Y; Liu J; Lu H; Wu C; Kerr P Environ Sci Pollut Res Int; 2016 Nov; 23(21):21377-21384. PubMed ID: 27502563 [TBL] [Abstract][Full Text] [Related]
2. Periphyton has the potential to increase phosphorus use efficiency in paddy fields. Li JY; Deng KY; Cai SJ; Lu HL; Xu RK Sci Total Environ; 2020 Jun; 720():137711. PubMed ID: 32325605 [TBL] [Abstract][Full Text] [Related]
3. Paddy periphyton reduced cadmium accumulation in rice (Oryza sativa) by removing and immobilizing cadmium from the water-soil interface. Lu H; Dong Y; Feng Y; Bai Y; Tang X; Li Y; Yang L; Liu J Environ Pollut; 2020 Jun; 261():114103. PubMed ID: 32066051 [TBL] [Abstract][Full Text] [Related]
4. Effects of alkaline and bioorganic amendments on cadmium, lead, zinc, and nutrient accumulation in brown rice and grain yield in acidic paddy fields contaminated with a mixture of heavy metals. He H; Tam NF; Yao A; Qiu R; Li WC; Ye Z Environ Sci Pollut Res Int; 2016 Dec; 23(23):23551-23560. PubMed ID: 27614643 [TBL] [Abstract][Full Text] [Related]
5. The effect of periphyton on seed germination and seedling growth of rice (Oryza sativa) in paddy area. Lu H; Liu J; Kerr PG; Shao H; Wu Y Sci Total Environ; 2017 Feb; 578():74-80. PubMed ID: 27503628 [TBL] [Abstract][Full Text] [Related]
6. Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice. Yu HY; Wang X; Li F; Li B; Liu C; Wang Q; Lei J Environ Pollut; 2017 May; 224():136-147. PubMed ID: 28202263 [TBL] [Abstract][Full Text] [Related]
7. Organic fertilizer application increases the soil respiration and net ecosystem carbon dioxide absorption of paddy fields under water-saving irrigation. Yang S; Xiao YN; Xu J Environ Sci Pollut Res Int; 2018 Apr; 25(10):9958-9968. PubMed ID: 29374862 [TBL] [Abstract][Full Text] [Related]
8. Multi-site and long-term estimation of phosphorus dynamics for paddy surface water in China based on new MLEpaddy-P. Zhang Y; Zhuang Y; Zhang Q; Zhai L; Zhang L; Wang N; Liu H; Zhuang Y J Environ Manage; 2024 Oct; 369():122267. PubMed ID: 39213847 [TBL] [Abstract][Full Text] [Related]
9. Periphytic Microbial Response to Environmental Phosphate (P) Bioavailability and Its Relevance to P Management in Paddy Fields. Zhang J; Su J; Ma C; Hu X; Teng HH Appl Environ Microbiol; 2021 Sep; 87(20):e0120121. PubMed ID: 34347511 [TBL] [Abstract][Full Text] [Related]
10. [Temporal and Spatial Distribution of Phosphorus in Paddy Fields Under Cyclic Irrigation of Drainage Water]. Jiao PJ; Xu D; Zhu JQ; Yu YD Huan Jing Ke Xue; 2016 Oct; 37(10):3842-3849. PubMed ID: 29964417 [TBL] [Abstract][Full Text] [Related]
11. Effect of introducing frogs and fish on soil phosphorus availability dynamics and their relationship with rice yield in paddy fields. Lin K; Wu J Sci Rep; 2020 Jan; 10(1):21. PubMed ID: 31913339 [TBL] [Abstract][Full Text] [Related]
12. [Effects of long-term manure and crop residues incorporation on yield and phosphorus saturation in a paddy soil]. Yan X; Wang DJ; Zhang G; Ran J; Zheng JC Huan Jing Ke Xue; 2013 Aug; 34(8):3205-10. PubMed ID: 24191569 [TBL] [Abstract][Full Text] [Related]
13. Mercury in rice (Oryza sativa L.) and rice-paddy soils under long-term fertilizer and organic amendment. Tang Z; Fan F; Wang X; Shi X; Deng S; Wang D Ecotoxicol Environ Saf; 2018 Apr; 150():116-122. PubMed ID: 29272715 [TBL] [Abstract][Full Text] [Related]
14. Soil phosphorus forms and their variations in selected paddy soils of Iran. Jalali M; Matin NH Environ Monit Assess; 2013 Oct; 185(10):8557-65. PubMed ID: 23616078 [TBL] [Abstract][Full Text] [Related]
15. Phosphorus content as a function of soil aggregate size and paddy cultivation in highly weathered soils. Li B; Ge T; Xiao H; Zhu Z; Li Y; Shibistova O; Liu S; Wu J; Inubushi K; Guggenberger G Environ Sci Pollut Res Int; 2016 Apr; 23(8):7494-503. PubMed ID: 26728283 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Zhou Q; Gibson CE; Zhu Y Chemosphere; 2001 Jan; 42(2):221-5. PubMed ID: 11237302 [TBL] [Abstract][Full Text] [Related]
17. [Effects of different fertilization regimes on nitrogen and phosphorus balance and eco-economic benefits in red paddy field.]. Hong X; Gao JS; Luo ZZ; Zeng XB; Bai LY; Luo ZY; Yi P; Chen SP Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):158-166. PubMed ID: 29692024 [TBL] [Abstract][Full Text] [Related]
18. [Dynamic characteristics of phosphorus in purple paddy soil and its environmental Impact]. Li XP; Shi XJ Huan Jing Ke Xue; 2008 Feb; 29(2):434-9. PubMed ID: 18613517 [TBL] [Abstract][Full Text] [Related]
19. [Soil fertility evolution, nutrient balance and reasonable fertilization in paddy field in southern area of Jiangsu Province]. Li R; Yang L; Pi J Ying Yong Sheng Tai Xue Bao; 2003 Nov; 14(11):1889-92. PubMed ID: 14997639 [TBL] [Abstract][Full Text] [Related]
20. [Effects of different fertilizer species on carbon and nitrogen leaching in a reddish paddy soil]. Liu XY; Zou JD; Xu LL; Zhang XY; Yang FT; Dai XQ; Wang ZQ; Sun XM Huan Jing Ke Xue; 2014 Aug; 35(8):3083-90. PubMed ID: 25338383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]