These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27502651)

  • 1. Effect of Topological Defects on Buckling Behavior of Single-walled Carbon Nanotube.
    Ranjbartoreh AR; Wang G
    Nanoscale Res Lett; 2011 Dec; 6(1):28. PubMed ID: 27502651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consideration of critical axial properties of pristine and defected carbon nanotubes under compression.
    Ranjbartoreh AR; Su D; Wang G
    J Nanosci Nanotechnol; 2012 Jun; 12(6):5025-9. PubMed ID: 22905571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diameter-Change-Induced Transition in Buckling Modes of Defective Zigzag Carbon Nanotubes.
    Umeno Y; Kubo A; Wang C; Shima H
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics analysis on buckling of defective carbon nanotubes.
    Kulathunga DD; Ang KK; Reddy JN
    J Phys Condens Matter; 2010 Sep; 22(34):345301. PubMed ID: 21403253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation.
    Ali S; Fu Liu T; Lian Z; Li B; Sheng Su D
    Phys Chem Chem Phys; 2017 Aug; 19(33):22344-22354. PubMed ID: 28805223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of high temperature and the presence of stone-wales defects on the mechanical behavior of a single wall carbon nanotube under tension and compression.
    Talukdar K; Mitra AK
    J Nanosci Nanotechnol; 2011 Jun; 11(6):4824-9. PubMed ID: 21770110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Buckling of carbon nanotubes at high temperatures.
    Zhang YY; Wang CM; Tan VB
    Nanotechnology; 2009 May; 20(21):215702. PubMed ID: 19423941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural stability and buckling analysis of a series of carbon nanotorus using molecular dynamics simulations.
    Ajori S; Ansari R; Hassani R; Haghighi S
    J Mol Model; 2018 Aug; 24(9):263. PubMed ID: 30167973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Buckling analysis of defective cross-linked functionalized single- and double-walled carbon nanotubes with polyethylene chains using molecular dynamics simulations.
    Ajori S; Ansari R; Parsapour H
    J Mol Model; 2016 Dec; 22(12):298. PubMed ID: 27900580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A molecular dynamics study on the buckling behavior of single-walled carbon nanotubes filled with gold nanowires.
    Ajori S; Parsapour H; Ansari R
    J Mol Model; 2020 Jul; 26(8):196. PubMed ID: 32621021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density functional investigation of hydrogen gas adsorption on Fe-doped pristine and Stone-Wales defected single-walled carbon nanotubes.
    Tabtimsai C; Keawwangchai S; Nunthaboot N; Ruangpornvisuti V; Wanno B
    J Mol Model; 2012 Aug; 18(8):3941-9. PubMed ID: 22431225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical reaction of nitric oxides with the 5-1DB defect of the single-walled carbon nanotube.
    Liu LV; Tian WQ; Wang YA
    J Phys Chem B; 2006 Feb; 110(5):1999-2005. PubMed ID: 16471775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of local chirality during SWCNT growth: armchair versus zigzag nanotubes.
    Kim J; Page AJ; Irle S; Morokuma K
    J Am Chem Soc; 2012 Jun; 134(22):9311-9. PubMed ID: 22571240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic signatures of topological and diatom-vacancy defects in single-walled carbon nanotubes.
    Saidi WA; Norman P
    Phys Chem Chem Phys; 2014 Jan; 16(4):1479-86. PubMed ID: 24301905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular-dynamics studies of bending mechanical properties of empty and C60-filled carbon nanotubes under nanoindentation.
    Jeng YR; Tsai PC; Fang TH
    J Chem Phys; 2005 Jun; 122(22):224713. PubMed ID: 15974709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of thermal conductivity of single-walled carbon nanotubes by fullerene encapsulation: the effect of vacancy defects.
    Li Y; Jiang JW
    Phys Chem Chem Phys; 2023 Mar; 25(11):7734-7740. PubMed ID: 36880294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical molecular dynamic simulation of monolayer graphene with consideration of structural defects.
    Ranjbartoreh AR; Wang G
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1398-401. PubMed ID: 22629965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tight-binding molecular dynamics study of the role of defects on carbon nanotube moduli and failure.
    Haskins RW; Maier RS; Ebeling RM; Marsh CP; Majure DL; Bednar AJ; Welch CR; Barker BC; Wu DT
    J Chem Phys; 2007 Aug; 127(7):074708. PubMed ID: 17718628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of tube length, radius and chirality on the buckling behavior of single-walled carbon nanotubes filled with copper atoms.
    Wang L; Zhang HW; Deng XM
    J Phys Condens Matter; 2009 Jul; 21(30):305301. PubMed ID: 21828546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Buckling behaviors of single-walled carbon nanotubes inserted with a linear carbon-atom chain.
    Zhu C; Chen Y; Liu R; Zhao J
    Nanotechnology; 2018 Aug; 29(33):335704. PubMed ID: 29808829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.