These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 27502678)

  • 1. Anisotropic Confinement, Electronic Coupling and Strain Induced Effects Detected by Valence-Band Anisotropy in Self-Assembled Quantum Dots.
    Villegas-Lelovsky L; Teodoro MD; Lopez-Richard V; Calseverino C; Malachias A; Marega E; Liang BL; Mazur YI; Marques GE; Trallero-Giner C; Salamo GJ
    Nanoscale Res Lett; 2011 Dec; 6(1):56. PubMed ID: 27502678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of post-growth annealing on the optical properties of InAs quantum dot chains grown on pre-patterned GaAs(100).
    Hakkarainen TV; Polojärvi V; Schramm A; Tommila J; Guina M
    Nanotechnology; 2012 Mar; 23(11):115702. PubMed ID: 22369789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between photoluminescence and morphology for single layer self-assembled InGaAs/GaAs quantum dots.
    Liang B; Yuan Q; Su L; Wang Y; Guo Y; Wang S; Fu G; Marega E; Mazur YI; Ware ME; Salamo G
    Opt Express; 2018 Sep; 26(18):23107-23118. PubMed ID: 30184966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic and Optical Properties of InAs QDs Grown by MBE on InGaAs Metamorphic Buffer.
    Wyborski P; Podemski P; Wroński PA; Jabeen F; Höfling S; Sęk G
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35161016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. InGaAs quantum dots grown by molecular beam epitaxy for light emission on Si substrates.
    Bru-Chevallier C; El Akra A; Pelloux-Gervais D; Dumont H; Canut B; Chauvin N; Regreny P; Gendry M; Patriarche G; Jancu JM; Even J; Noe P; Calvo V; Salem B
    J Nanosci Nanotechnol; 2011 Oct; 11(10):9153-9. PubMed ID: 22400316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. InAs quantum dots capped by GaAs, In0.4Ga0.6As dots, and In0.2Ga0.8As well.
    Fu Y; Wang SM; Ferdos F; Sadeghi M; Larsson A
    J Nanosci Nanotechnol; 2002; 2(3-4):421-6. PubMed ID: 12908273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots.
    Zieliński M
    J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots.
    Ozel T; Nizamoglu S; Sefunc MA; Samarskaya O; Ozel IO; Mutlugun E; Lesnyak V; Gaponik N; Eychmuller A; Gaponenko SV; Demir HV
    ACS Nano; 2011 Feb; 5(2):1328-34. PubMed ID: 21247187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of growth and annealing temperatures on the structural and the optical properties of In0.6Al0.4As/Al0.4Ga0.6As quantum dots.
    Kim SY; Song JD; Han IK; Kim TW
    J Nanosci Nanotechnol; 2014 Aug; 14(8):5881-4. PubMed ID: 25936020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density dependent composition of InAs quantum dots extracted from grazing incidence x-ray diffraction measurements.
    Sharma M; Sanyal MK; Farrer I; Ritchie DA; Dey AB; Bhattacharyya A; Seeck OH; Skiba-Szymanska J; Felle M; Bennett AJ; Shields AJ
    Sci Rep; 2015 Oct; 5():15732. PubMed ID: 26506865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical Properties of a Quantum Dot-Ring System Grown Using Droplet Epitaxy.
    Linares-García G; Meza-Montes L; Stinaff E; Alsolamy SM; Ware ME; Mazur YI; Wang ZM; Lee J; Salamo GJ
    Nanoscale Res Lett; 2016 Dec; 11(1):309. PubMed ID: 27342603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vertical ordering and electronic coupling in bilayer nanoscale InAs/GaAs quantum dots separated by a thin spacer layer.
    Chakrabarti S; Halder N; Sengupta S; Ghosh S; Mishima TD; Stanley CR
    Nanotechnology; 2008 Dec; 19(50):505704. PubMed ID: 19942781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional control of self-assembled quantum dot configurations.
    Yakes MK; Cress CD; Tischler JG; Bracker AS
    ACS Nano; 2010 Jul; 4(7):3877-82. PubMed ID: 20557120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled InAs/GaAs quantum dots covered by different strain reducing layers exhibiting strong photo- and electroluminescence in 1.3 and 1.55 microm bands.
    Hazdra P; Oswald J; Komarnitskyy V; Kuldová K; Hospodková A; Hulicius E; Pangrác J
    J Nanosci Nanotechnol; 2011 Aug; 11(8):6804-9. PubMed ID: 22103083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. InGaAs quantum dot chains grown by twofold selective area molecular beam epitaxy.
    Barbot C; Rondeau-Body C; Coinon C; Deblock Y; Tilmant P; Vaurette F; Yarekha D; Berthe M; Thomas L; Diesinger H; Capiod P; Desplanque L; Grandidier B
    Nanotechnology; 2024 Jul; 35(39):. PubMed ID: 38964286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth, structural, and optical properties of self-assembled (In,Ga)as quantum posts on GaAs.
    He J; Krenner HJ; Pryor C; Zhang JP; Wu Y; Allen DG; Morris CM; Sherwin MS; Petroff PM
    Nano Lett; 2007 Mar; 7(3):802-6. PubMed ID: 17326694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of temperature on the photoluminescence properties of single InAs quantum dots grown on patterned GaAs.
    Tommila J; Strelow C; Schramm A; Hakkarainen TV; Dumitrescu M; Kipp T; Guina M
    Nanoscale Res Lett; 2012 Jun; 7(1):313. PubMed ID: 22713215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoluminescence efficiency and size distribution of self assembled ge dots on porous TiO2.
    Rowell NL; Lockwood DJ; Amiard G; Favre L; Ronda A; Berbezier I; Faustini M; Grosso D
    J Nanosci Nanotechnol; 2011 Oct; 11(10):9190-5. PubMed ID: 22400322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Culling a Self-Assembled Quantum Dot as a Single-Photon Source Using X-ray Microscopy.
    Dey AB; Sanyal MK; Schropp A; Achilles S; Keller TF; Farrer I; Ritchie DA; Bertram F; Schroer CG; Seeck OH
    ACS Nano; 2023 Aug; 17(16):16080-16088. PubMed ID: 37523736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of imaging-grazing-incidence X-ray diffraction and specular reflectivity to the structural investigation of quantum-confinement semiconductor devices.
    Holt SA; Brown AS; Creagh DC; Leon R
    J Synchrotron Radiat; 1997 May; 4(Pt 3):169-74. PubMed ID: 16699224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.