These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27502683)

  • 21. Charge transport through graphene junctions with wetting metal leads.
    Barraza-Lopez S; Kindermann M; Chou MY
    Nano Lett; 2012 Jul; 12(7):3424-30. PubMed ID: 22676724
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Staggered potential and magnetic field tunable electronic switch in a kagome nanoribbon junction.
    Zhang L; Tong P
    J Phys Condens Matter; 2019 Jul; 31(30):305302. PubMed ID: 31022710
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tuning phononic and electronic contributions of thermoelectric in defected S-shape graphene nanoribbons.
    Bazrafshan MA; Khoeini F
    Sci Rep; 2022 Nov; 12(1):18419. PubMed ID: 36319726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermoelectric transport properties of armchair graphene nanoribbon heterostructures.
    Almeida PA; Martins GB
    J Phys Condens Matter; 2022 Jun; 34(33):. PubMed ID: 35675807
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum transport simulations of graphene nanoribbon devices using Dirac equation calibrated with tight-binding π-bond model.
    Chin SK; Lam KT; Seah D; Liang G
    Nanoscale Res Lett; 2012 Feb; 7(1):114. PubMed ID: 22325480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum transport in graphene nanonetworks.
    Botello-Méndez AR; Cruz-Silva E; Romo-Herrera JM; López-Urías F; Terrones M; Sumpter BG; Terrones H; Charlier JC; Meunier V
    Nano Lett; 2011 Aug; 11(8):3058-64. PubMed ID: 21696176
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transport properties of graphene nanoribbon-based molecular devices.
    Ding Z; Jiang J; Xing H; Shu H; Dong R; Chen X; Lu W
    J Comput Chem; 2011 Mar; 32(4):737-41. PubMed ID: 20925088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transport properties of two finite armchair graphene nanoribbons.
    Rosales L; González JW
    Nanoscale Res Lett; 2013 Jan; 8(1):1. PubMed ID: 23279756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electronic Structure and I-V Characteristics of InSe Nanoribbons.
    Yao AL; Wang XF; Liu YS; Sun YN
    Nanoscale Res Lett; 2018 Apr; 13(1):107. PubMed ID: 29671093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical study of electronic transport through P-porphyrin and S-porphyrin nanoribbons.
    Mondal R; Bhattacharya B; Singh NB; Sarkar U
    J Mol Graph Model; 2020 Jun; 97():107543. PubMed ID: 32006741
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular Graphene Nanoribbon Junctions.
    Marongiu M; Ha T; Gil-Guerrero S; Garg K; Mandado M; Melle-Franco M; Diez-Perez I; Mateo-Alonso A
    J Am Chem Soc; 2024 Feb; 146(6):3963-3973. PubMed ID: 38305745
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of molybdenum disulfide nanoribbon on quantum transport of graphene.
    Gao G; Li Z; Chen M; Xie Y; Wang Y
    J Phys Condens Matter; 2017 Nov; 29(43):435001. PubMed ID: 28829340
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new photodetector structure based on graphene nanomeshes: an ab initio study.
    Sakkaki B; Rasooli Saghai H; Darvish G; Khatir M
    Beilstein J Nanotechnol; 2020; 11():1036-1044. PubMed ID: 32733778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large spin-filtering effect in Ti-doped defective zigzag graphene nanoribbon.
    Tawfik SA; Cui XY; Ringer SP; Stampfl C
    Phys Chem Chem Phys; 2016 Jun; 18(24):16224-8. PubMed ID: 27252042
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron transport properties of atomic carbon nanowires between graphene electrodes.
    Shen L; Zeng M; Yang SW; Zhang C; Wang X; Feng Y
    J Am Chem Soc; 2010 Aug; 132(33):11481-6. PubMed ID: 20677763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-Performance Charge Transport in Semiconducting Armchair Graphene Nanoribbons Grown Directly on Germanium.
    Jacobberger RM; Arnold MS
    ACS Nano; 2017 Sep; 11(9):8924-8929. PubMed ID: 28880526
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stable two-dimensional conductance switch of polyaniline molecule connecting to graphene nanoribbons.
    Fan ZQ; Chen KQ
    Sci Rep; 2014 Aug; 4():5976. PubMed ID: 25099203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical investigation of the effect of substrate surface roughness on the performance of zigzag graphene nanoribbon field effect transistors symmetrically doped with BN.
    Sanaeepur M; Yazdanpanah Goharrizi A; Sharifi MJ
    Beilstein J Nanotechnol; 2014; 5():1569-74. PubMed ID: 25247138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electronic spectrum of Kekulé patterned graphene considering second neighbor-interactions.
    Andrade E; Naumis GG; Carrillo-Bastos R
    J Phys Condens Matter; 2021 May; 33(22):. PubMed ID: 33730699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The finite-size effect on the transport properties in edge-modified graphene nanoribbon-based molecular devices.
    Ding Z; Jiang J; Xing H; Shu H; Huang Y; Chen X; Lu W
    J Comput Chem; 2011 Jun; 32(8):1753-9. PubMed ID: 21351109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.