These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 2750303)

  • 1. [A method for recording auditory evoked potentials from the frequency modulation of band noises].
    Karaichev KI; Samoĭlovich LA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1989; 39(2):382-7. PubMed ID: 2750303
    [No Abstract]   [Full Text] [Related]  

  • 2. The dependence of the auditory evoked N1m decrement on the bandwidth of preceding notch-filtered noise.
    Okamoto H; Kakigi R; Gunji A; Kubo T; Pantev C
    Eur J Neurosci; 2005 Apr; 21(7):1957-61. PubMed ID: 15869488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of hearing and auditory nerve function by combining ABR, DPOAE and eABR tests into a single recording session.
    Polak M; Eshraghi AA; Nehme O; Ahsan S; Guzman J; Delgado RE; He J; Telischi FF; Balkany TJ; Van De Water TR
    J Neurosci Methods; 2004 Apr; 134(2):141-9. PubMed ID: 15003380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolving precise temporal processing properties of the auditory system using continuous stimuli.
    Lalor EC; Power AJ; Reilly RB; Foxe JJ
    J Neurophysiol; 2009 Jul; 102(1):349-59. PubMed ID: 19439675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural interactions within and beyond the critical band elicited by two simultaneously presented narrow band noises: a magnetoencephalographic study.
    Okamoto H; Stracke H; Pantev C
    Neuroscience; 2008 Feb; 151(3):913-20. PubMed ID: 18191899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hearing abilities of the prawn Palaemon serratus.
    Lovell JM; Findlay MM; Moate RM; Yan HY
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Jan; 140(1):89-100. PubMed ID: 15664317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auditory evoked potentials during short-term acoustic stimulation.
    Kevanishvili ZSh; Khachidze OA
    Hum Physiol; 1979; 5(4):555-7. PubMed ID: 549833
    [No Abstract]   [Full Text] [Related]  

  • 8. Reliability of P50 auditory sensory gating measures in infants during active sleep.
    Hunter SK; Corral N; Ponicsan H; Ross RG
    Neuroreport; 2008 Jan; 19(1):79-82. PubMed ID: 18281897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Brief acoustic stimuli for the recording of brain stem potentials by computer controlled system analysis].
    Kleberc G; Seifert K
    Laryngol Rhinol Otol (Stuttg); 1983 Oct; 62(10):487-92. PubMed ID: 6645752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Short-latency auditory evoked potentials during a change in the physical parameter of a sound stimulus].
    Khachunts AS; Vaganian LG; Bagdasarian RA; Tatevosian NE; Tatevosian IG; Kostanian EG; Manasian KA; Bilian RN
    Fiziol Cheloveka; 2000; 26(3):48-53. PubMed ID: 10905033
    [No Abstract]   [Full Text] [Related]  

  • 11. [The discrimination of frequency-modulated signals under free behavior conditions in cats].
    Kalmykova IV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1990; 40(3):451-5. PubMed ID: 2169150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Reverse adaptation studied by recording short-latency auditory evoked potentials].
    Petrov SM; Pudov AI
    Fiziol Cheloveka; 1998; 24(4):71-4. PubMed ID: 9778900
    [No Abstract]   [Full Text] [Related]  

  • 13. [A method for studying the physiological effects of low-frequency acoustic oscillations].
    Ponomarenko GN; Cherniakov GM; Vander VA; Orlov LA
    Fiziol Zh SSSR Im I M Sechenova; 1992 May; 78(5):121-4. PubMed ID: 1334875
    [No Abstract]   [Full Text] [Related]  

  • 14. Auditory on- and off-responses and alpha oscillations in the human EEG.
    Isoglu-Alkac U; Keskindemirci G; Karamursel S
    Int J Neurosci; 2004 Jul; 114(7):879-906. PubMed ID: 15204052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Long-latency auditory evoked potentials in humans exposed to sonic image movement].
    Vaĭtulevich SF; Pak SP
    Zh Evol Biokhim Fiziol; 1985; 21(5):498-503. PubMed ID: 4060943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Frequency dependencies of afferent inhibition in the acoustic nerve fibers of the pigeon].
    Temchin AN
    Dokl Akad Nauk SSSR; 1985; 285(1):252-6. PubMed ID: 4075966
    [No Abstract]   [Full Text] [Related]  

  • 17. [The evaluation of human perception of the rate and acceleration in the approach and withdrawal of a sound source].
    Vartanian IA; Andreeva IG; Mazing AIu; Markovich AM
    Fiziol Cheloveka; 1999; 25(6):38-47. PubMed ID: 10641382
    [No Abstract]   [Full Text] [Related]  

  • 18. Click train encoding in primary and non-primary auditory cortex of anesthetized macaque monkeys.
    Oshurkova E; Scheich H; Brosch M
    Neuroscience; 2008 Jun; 153(4):1289-99. PubMed ID: 18423884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of 40 Hz auditory steady-state response (ASSR) and cortical auditory evoked potential (CAEP) thresholds in awake adult subjects.
    Tomlin D; Rance G; Graydon K; Tsialios I
    Int J Audiol; 2006 Oct; 45(10):580-8. PubMed ID: 17062499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auditory brainstem responses to clicks in neonates.
    Durieux-Smith A; Edwards CG; Picton TW; McMurray B
    J Otolaryngol Suppl; 1985 Feb; 14():12-8. PubMed ID: 3864988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.