These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 27503142)
1. The venom gland transcriptome of the parasitoid wasp Nasonia vitripennis highlights the importance of novel genes in venom function. Sim AD; Wheeler D BMC Genomics; 2016 Aug; 17():571. PubMed ID: 27503142 [TBL] [Abstract][Full Text] [Related]
3. De novo sequencing and transcriptome analysis of venom glands of endoparasitoid Aenasius arizonensis (Girault) (=Aenasius bambawalei Hayat) (Hymenoptera, Encyrtidae). Shaina H; UlAbdin Z; Webb BA; Arif MJ; Jamil A Toxicon; 2016 Oct; 121():134-144. PubMed ID: 27594666 [TBL] [Abstract][Full Text] [Related]
4. Evaluating the evolution and function of the dynamic Venom Y protein in ectoparasitoid wasps. Martinson EO; Siebert AL; He M; Kelkar YD; Doucette LA; Werren JH Insect Mol Biol; 2019 Aug; 28(4):499-508. PubMed ID: 30636014 [TBL] [Abstract][Full Text] [Related]
5. Early changes in the pupal transcriptome of the flesh fly Sarcophagha crassipalpis to parasitization by the ectoparasitic wasp, Nasonia vitripennis. Danneels EL; Formesyn EM; Hahn DA; Denlinger DL; Cardoen D; Wenseleers T; Schoofs L; de Graaf DC Insect Biochem Mol Biol; 2013 Dec; 43(12):1189-200. PubMed ID: 24161520 [TBL] [Abstract][Full Text] [Related]
6. Partial venom gland transcriptome of a Drosophila parasitoid wasp, Leptopilina heterotoma, reveals novel and shared bioactive profiles with stinging Hymenoptera. Heavner ME; Gueguen G; Rajwani R; Pagan PE; Small C; Govind S Gene; 2013 Sep; 526(2):195-204. PubMed ID: 23688557 [TBL] [Abstract][Full Text] [Related]
7. Identification of Genes Uniquely Expressed in the Germ-Line Tissues of the Jewel Wasp Nasonia vitripennis. Ferree PM; Fang C; Mastrodimos M; Hay BA; Amrhein H; Akbari OS G3 (Bethesda); 2015 Oct; 5(12):2647-53. PubMed ID: 26464360 [TBL] [Abstract][Full Text] [Related]
8. De novo sequencing and transcriptome analysis of female venom glands of ectoparasitoid Bracon hebetor (Say.) (Hymenoptera: Braconidae). Manzoor A; UlAbdin Z; Webb BA; Arif MJ; Jamil A Comp Biochem Physiol Part D Genomics Proteomics; 2016 Dec; 20():101-110. PubMed ID: 27636656 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome analysis provides insight into venom evolution in a seed-parasitic wasp, Megastigmus spermotrophus. Paulson AR; Le CH; Dickson JC; Ehlting J; von Aderkas P; Perlman SJ Insect Mol Biol; 2016 Oct; 25(5):604-16. PubMed ID: 27286234 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome profiling of venom gland from wasp species: de novo assembly, functional annotation, and discovery of molecular markers. Tan J; Wang W; Wu F; Li Y; Fan Q BMC Genomics; 2020 Jun; 21(1):427. PubMed ID: 32580761 [TBL] [Abstract][Full Text] [Related]
11. Venom of the ectoparasitoid, Nasonia vitripennis, influences gene expression in Musca domestica hemocytes. Qian C; Liu Y; Fang Q; Min-Li Y; Liu SS; Ye GY; Li YM Arch Insect Biochem Physiol; 2013 Aug; 83(4):211-31. PubMed ID: 23818091 [TBL] [Abstract][Full Text] [Related]
12. A new approach for investigating venom function applied to venom calreticulin in a parasitoid wasp. Siebert AL; Wheeler D; Werren JH Toxicon; 2015 Dec; 107(Pt B):304-16. PubMed ID: 26359852 [TBL] [Abstract][Full Text] [Related]
13. OGS2: genome re-annotation of the jewel wasp Nasonia vitripennis. Rago A; Gilbert DG; Choi JH; Sackton TB; Wang X; Kelkar YD; Werren JH; Colbourne JK BMC Genomics; 2016 Aug; 17(1):678. PubMed ID: 27561358 [TBL] [Abstract][Full Text] [Related]
15. De Novo sequencing and transcriptome analysis for Tetramorium bicarinatum: a comprehensive venom gland transcriptome analysis from an ant species. Bouzid W; Verdenaud M; Klopp C; Ducancel F; Noirot C; Vétillard A BMC Genomics; 2014 Nov; 15(1):987. PubMed ID: 25407482 [TBL] [Abstract][Full Text] [Related]
16. Proteo-Transcriptomic Characterization of the Venom from the Endoparasitoid Wasp Özbek R; Wielsch N; Vogel H; Lochnit G; Foerster F; Vilcinskas A; von Reumont BM Toxins (Basel); 2019 Dec; 11(12):. PubMed ID: 31835557 [TBL] [Abstract][Full Text] [Related]
17. Integrative approach reveals composition of endoparasitoid wasp venoms. Goecks J; Mortimer NT; Mobley JA; Bowersock GJ; Taylor J; Schlenke TA PLoS One; 2013; 8(5):e64125. PubMed ID: 23717546 [TBL] [Abstract][Full Text] [Related]
18. The role of serine- and metalloproteases in Nasonia vitripennis venom in cell death related processes towards a Spodoptera frugiperda Sf21 cell line. Formesyn EM; Heyninck K; de Graaf DC J Insect Physiol; 2013 Aug; 59(8):795-803. PubMed ID: 23684740 [TBL] [Abstract][Full Text] [Related]
19. Protein Discovery: Combined Transcriptomic and Proteomic Analyses of Venom from the Endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae). Teng ZW; Xiong SJ; Xu G; Gan SY; Chen X; Stanley D; Yan ZC; Ye GY; Fang Q Toxins (Basel); 2017 Apr; 9(4):. PubMed ID: 28417942 [TBL] [Abstract][Full Text] [Related]
20. Unraveling the venom components of an encyrtid endoparasitoid wasp Diversinervus elegans. Liu NY; Wang JQ; Zhang ZB; Huang JM; Zhu JY Toxicon; 2017 Sep; 136():15-26. PubMed ID: 28651989 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]