BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 27503169)

  • 1. A 'suicide' CRISPR-Cas9 system to promote gene deletion and restoration by electroporation in Cryptococcus neoformans.
    Wang Y; Wei D; Zhu X; Pan J; Zhang P; Huo L; Zhu X
    Sci Rep; 2016 Aug; 6():31145. PubMed ID: 27503169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple Applications of a Transient CRISPR-Cas9 Coupled with Electroporation (TRACE) System in the
    Fan Y; Lin X
    Genetics; 2018 Apr; 208(4):1357-1372. PubMed ID: 29444806
    [No Abstract]   [Full Text] [Related]  

  • 3. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 4. Transformation of Cryptococcus neoformans by electroporation using a transient CRISPR-Cas9 expression (TRACE) system.
    Lin J; Fan Y; Lin X
    Fungal Genet Biol; 2020 May; 138():103364. PubMed ID: 32142753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha.
    Numamoto M; Maekawa H; Kaneko Y
    J Biosci Bioeng; 2017 Nov; 124(5):487-492. PubMed ID: 28666889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae.
    Katayama T; Tanaka Y; Okabe T; Nakamura H; Fujii W; Kitamoto K; Maruyama J
    Biotechnol Lett; 2016 Apr; 38(4):637-42. PubMed ID: 26687199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9.
    Zhu J; Song N; Sun S; Yang W; Zhao H; Song W; Lai J
    J Genet Genomics; 2016 Jan; 43(1):25-36. PubMed ID: 26842991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the potential of genome editing CRISPR-Cas9 technology.
    Singh V; Braddick D; Dhar PK
    Gene; 2017 Jan; 599():1-18. PubMed ID: 27836667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae.
    Generoso WC; Gottardi M; Oreb M; Boles E
    J Microbiol Methods; 2016 Aug; 127():203-205. PubMed ID: 27327211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish.
    Hruscha A; Krawitz P; Rechenberg A; Heinrich V; Hecht J; Haass C; Schmid B
    Development; 2013 Dec; 140(24):4982-7. PubMed ID: 24257628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted Genome Editing via CRISPR in the Pathogen Cryptococcus neoformans.
    Arras SD; Chua SM; Wizrah MS; Faint JA; Yap AS; Fraser JA
    PLoS One; 2016; 11(10):e0164322. PubMed ID: 27711143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9-mediated correction of human genetic disease.
    Men K; Duan X; He Z; Yang Y; Yao S; Wei Y
    Sci China Life Sci; 2017 May; 60(5):447-457. PubMed ID: 28534256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precise gene deletion and replacement using the CRISPR/Cas9 system in human cells.
    Zheng Q; Cai X; Tan MH; Schaffert S; Arnold CP; Gong X; Chen CZ; Huang S
    Biotechniques; 2014; 57(3):115-24. PubMed ID: 25209046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9 in the Chicken Embryo.
    Morin V; Véron N; Marcelle C
    Methods Mol Biol; 2017; 1650():113-123. PubMed ID: 28809017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simplified All-In-One CRISPR-Cas9 Construction for Efficient Genome Editing in
    Zhang P; Wang Y; Li C; Ma X; Ma L; Zhu X
    J Fungi (Basel); 2021 Jun; 7(7):. PubMed ID: 34202664
    [No Abstract]   [Full Text] [Related]  

  • 16. The application of somatic CRISPR-Cas9 to conditional genome editing in Caenorhabditis elegans.
    Li W; Ou G
    Genesis; 2016 Apr; 54(4):170-81. PubMed ID: 26934570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing a CRISPR/Cas9 System for Genome Editing in the Basidiomycetous Yeast Rhodosporidium toruloides.
    Jiao X; Zhang Y; Liu X; Zhang Q; Zhang S; Zhao ZK
    Biotechnol J; 2019 Jul; 14(7):e1900036. PubMed ID: 31066204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short homology-directed repair using optimized Cas9 in the pathogen Cryptococcus neoformans enables rapid gene deletion and tagging.
    Huang MY; Joshi MB; Boucher MJ; Lee S; Loza LC; Gaylord EA; Doering TL; Madhani HD
    Genetics; 2022 Jan; 220(1):. PubMed ID: 34791226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of the CRISPR/Cas9 system for the efficient production of mutant mice using crRNA/tracrRNA with Cas9 nickase and FokI-dCas9.
    Terao M; Tamano M; Hara S; Kato T; Kinoshita M; Takada S
    Exp Anim; 2016 Jul; 65(3):275-83. PubMed ID: 26972821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced genome editing in mammalian cells with a modified dual-fluorescent surrogate system.
    Zhou Y; Liu Y; Hussmann D; Brøgger P; Al-Saaidi RA; Tan S; Lin L; Petersen TS; Zhou GQ; Bross P; Aagaard L; Klein T; Rønn SG; Pedersen HD; Bolund L; Nielsen AL; Sørensen CB; Luo Y
    Cell Mol Life Sci; 2016 Jul; 73(13):2543-63. PubMed ID: 26755436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.