These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27503257)

  • 1. Chickpea Ferritin CaFer1 Participates in Oxidative Stress Response, and Promotes Growth and Development.
    Parveen S; Gupta DB; Dass S; Kumar A; Pandey A; Chakraborty S; Chakraborty N
    Sci Rep; 2016 Aug; 6():31218. PubMed ID: 27503257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional regulation of chickpea ferritin CaFer1 influences its role in iron homeostasis and stress response.
    Parveen S; Pandey A; Jameel N; Chakraborty S; Chakraborty N
    J Plant Physiol; 2018 Mar; 222():9-16. PubMed ID: 29304382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in the redox status of chickpea roots in response to infection by Fusarium oxysporum f. sp. ciceris: apoplastic antioxidant enzyme activities and expression of oxidative stress-related genes.
    García-Limones C; Dorado G; Navas-Cortés JA; Jiménez-Díaz RM; Tena M
    Plant Biol (Stuttg); 2009 Mar; 11(2):194-203. PubMed ID: 19228326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of multiple defense responsive pathways by CaWRKY70 transcription factor promotes susceptibility in chickpea under Fusarium oxysporum stress condition.
    Chakraborty J; Sen S; Ghosh P; Jain A; Das S
    BMC Plant Biol; 2020 Jul; 20(1):319. PubMed ID: 32631232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of CaTLP1, a putative transcription factor in chickpea (Cicer arietinum L.), promotes stress tolerance.
    Wardhan V; Jahan K; Gupta S; Chennareddy S; Datta A; Chakraborty S; Chakraborty N
    Plant Mol Biol; 2012 Jul; 79(4-5):479-93. PubMed ID: 22644439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1).
    Chatterjee M; Gupta S; Bhar A; Chakraborti D; Basu D; Das S
    BMC Genomics; 2014 Nov; 15(1):949. PubMed ID: 25363865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification, Structural Characterization and Gene Expression Analysis of Members of the Nuclear Factor-Y Family in Chickpea (
    Chu HD; Nguyen KH; Watanabe Y; Le DT; Pham TLT; Mochida K; Tran LP
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30360493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A role for ferritin in the antioxidant system in coffee cell cultures.
    Bottcher A; Nobile PM; Martins PF; Conte FF; Azevedo RA; Mazzafera P
    Biometals; 2011 Apr; 24(2):225-37. PubMed ID: 21046200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fusarium oxysporum f.sp. ciceri race 1 induced redox state alterations are coupled to downstream defense signaling in root tissues of chickpea (Cicer arietinum L.).
    Gupta S; Bhar A; Chatterjee M; Das S
    PLoS One; 2013; 8(9):e73163. PubMed ID: 24058463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A molecular insight into the early events of chickpea (Cicer arietinum) and Fusarium oxysporum f. sp. ciceri (race 1) interaction through cDNA-AFLP analysis.
    Gupta S; Chakraborti D; Rangi RK; Basu D; Das S
    Phytopathology; 2009 Nov; 99(11):1245-57. PubMed ID: 19821728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary metabolism of chickpea is the initial target of wound inducing early sensed Fusarium oxysporum f. sp. ciceri race I.
    Gupta S; Chakraborti D; Sengupta A; Basu D; Das S
    PLoS One; 2010 Feb; 5(2):e9030. PubMed ID: 20140256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of physiological adjustment of N2 fixation in Cicer arietinum L. (chickpea) during early stages of water deficit: single or multi-factor controls.
    Nasr Esfahani M; Sulieman S; Schulze J; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS
    Plant J; 2014 Sep; 79(6):964-80. PubMed ID: 24947137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide identification and expression analysis of the CaNAC family members in chickpea during development, dehydration and ABA treatments.
    Ha CV; Esfahani MN; Watanabe Y; Tran UT; Sulieman S; Mochida K; Nguyen DV; Tran LS
    PLoS One; 2014; 9(12):e114107. PubMed ID: 25479253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long term transcript accumulation during the development of dehydration adaptation in Cicer arietinum.
    Boominathan P; Shukla R; Kumar A; Manna D; Negi D; Verma PK; Chattopadhyay D
    Plant Physiol; 2004 Jul; 135(3):1608-20. PubMed ID: 15247380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A proteomic study of in-root interactions between chickpea pathogens: the root-knot nematode Meloidogyne artiellia and the soil-borne fungus Fusarium oxysporum f. sp. ciceris race 5.
    Palomares-Rius JE; Castillo P; Navas-Cortés JA; Jiménez-Díaz RM; Tena M
    J Proteomics; 2011 Sep; 74(10):2034-51. PubMed ID: 21640211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CaMPK9 increases the stability of CaWRKY40 transcription factor which triggers defense response in chickpea upon Fusarium oxysporum f. sp. ciceri Race1 infection.
    Chakraborty J; Ghosh P; Sen S; Nandi AK; Das S
    Plant Mol Biol; 2019 Jul; 100(4-5):411-431. PubMed ID: 30953279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the gene and protein structures of the CaSWEET family members in chickpea (Cicer arietinum), and their gene expression patterns in different organs under various stress and abscisic acid treatments.
    La HV; Chu HD; Tran CD; Nguyen KH; Le QTN; Hoang CM; Cao BP; Pham ATC; Nguyen BD; Nguyen TQ; Van Nguyen L; Ha CV; Le HT; Le HH; Le TD; Tran LP
    Gene; 2022 Apr; 819():146210. PubMed ID: 35104577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secretome analysis of chickpea reveals dynamic extracellular remodeling and identifies a Bet v1-like protein, CaRRP1 that participates in stress response.
    Gupta S; Wardhan V; Kumar A; Rathi D; Pandey A; Chakraborty S; Chakraborty N
    Sci Rep; 2015 Dec; 5():18427. PubMed ID: 26678784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoproteomic dynamics of chickpea (Cicer arietinum L.) reveals shared and distinct components of dehydration response.
    Subba P; Barua P; Kumar R; Datta A; Soni KK; Chakraborty S; Chakraborty N
    J Proteome Res; 2013 Nov; 12(11):5025-47. PubMed ID: 24083463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide accumulation is required to protect against iron-mediated oxidative stress in frataxin-deficient Arabidopsis plants.
    Martin M; Colman MJ; Gómez-Casati DF; Lamattina L; Zabaleta EJ
    FEBS Lett; 2009 Feb; 583(3):542-8. PubMed ID: 19114041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.