BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 27503408)

  • 21. Bifunctional linker-based immunosensing for rapid and visible detection of bacteria in real matrices.
    You Y; Lim S; Hahn J; Choi YJ; Gunasekaran S
    Biosens Bioelectron; 2018 Feb; 100():389-395. PubMed ID: 28954255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance.
    Wang Y; Dostalek J; Knoll W
    Anal Chem; 2011 Aug; 83(16):6202-7. PubMed ID: 21711037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cow's milk proteins in human milk.
    Coscia A; Orrù S; Di Nicola P; Giuliani F; Rovelli I; Peila C; Martano C; Chiale F; Bertino E
    J Biol Regul Homeost Agents; 2012; 26(3 Suppl):39-42. PubMed ID: 23158513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of immunoarrays using a gold grating-based dual mode surface plasmon-coupled emission (SPCE) sensor chip.
    Yuk JS; Gibson GN; Rice JM; Guignon EF; Lynes MA
    Analyst; 2012 Jun; 137(11):2574-81. PubMed ID: 22498719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface plasmon resonance based immunosensor for the detection of the cancer biomarker carcinoembryonic antigen.
    Altintas Z; Uludag Y; Gurbuz Y; Tothill IE
    Talanta; 2011 Oct; 86():377-83. PubMed ID: 22063554
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced sensitivity of self-assembled-monolayer-based SPR immunosensor for detection of benzaldehyde using a single-step multi-sandwich immunoassay.
    Gobi KV; Matsumoto K; Toko K; Ikezaki H; Miura N
    Anal Bioanal Chem; 2007 Apr; 387(8):2727-35. PubMed ID: 17318518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface plasmon resonance sensor for phosmet of agricultural products at the ppt detection level.
    Song Y; Liu M; Wang S
    J Agric Food Chem; 2013 Mar; 61(11):2625-30. PubMed ID: 23402473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensitive and rapid detection of aflatoxin M1 in milk utilizing enhanced SPR and p(HEMA) brushes.
    Karczmarczyk A; Dubiak-Szepietowska M; Vorobii M; Rodriguez-Emmenegger C; Dostálek J; Feller KH
    Biosens Bioelectron; 2016 Jul; 81():159-165. PubMed ID: 26945182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of bovine alpha-S1-casein in term and preterm human colostrum with proteomic techniques.
    Orru S; Di Nicola P; Giuliani F; Fabris C; Conti A; Coscia A; Bertino E
    Int J Immunopathol Pharmacol; 2013; 26(2):435-44. PubMed ID: 23755758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aptamer/thrombin/aptamer-AuNPs sandwich enhanced surface plasmon resonance sensor for the detection of subnanomolar thrombin.
    Bai Y; Feng F; Zhao L; Wang C; Wang H; Tian M; Qin J; Duan Y; He X
    Biosens Bioelectron; 2013 Sep; 47():265-70. PubMed ID: 23584389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Real-time and sensitive detection of Salmonella Typhimurium using an automated quartz crystal microbalance (QCM) instrument with nanoparticles amplification.
    Salam F; Uludag Y; Tothill IE
    Talanta; 2013 Oct; 115():761-7. PubMed ID: 24054660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Continuous flow immunosensor for highly selective and real-time detection of sub-ppb levels of 2-hydroxybiphenyl by using surface plasmon resonance imaging.
    Gobi KV; Tanaka H; Shoyama Y; Miura N
    Biosens Bioelectron; 2004 Sep; 20(2):350-7. PubMed ID: 15308241
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly sensitive and selective surface plasmon resonance sensor for detection of sub-ppb levels of benzo[a]pyrene by indirect competitive immunoreaction method.
    Miura N; Sasaki M; Gobi KV; Kataoka C; Shoyama Y
    Biosens Bioelectron; 2003 Jul; 18(7):953-9. PubMed ID: 12713919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Label-free and multiplex detection of antibiotic residues in milk using imaging surface plasmon resonance-based immunosensor.
    Rebe Raz S; Bremer MG; Haasnoot W; Norde W
    Anal Chem; 2009 Sep; 81(18):7743-9. PubMed ID: 19685910
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of GDF11 by using a Ti
    Liu C; Wang R; Shao Y; Chen C; Wu P; Wei Y; Gao Y
    Opt Express; 2021 Oct; 29(22):36598-36607. PubMed ID: 34809067
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A.
    Huang CF; Yao GH; Liang RP; Qiu JD
    Biosens Bioelectron; 2013 Dec; 50():305-10. PubMed ID: 23876541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface plasmon resonance biosensing: Approaches for screening and characterising antibodies for food diagnostics.
    Yakes BJ; Buijs J; Elliott CT; Campbell K
    Talanta; 2016 Aug; 156-157():55-63. PubMed ID: 27260435
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of elution strategy for simultaneous detection of chloramphenicol and gentamicin in complex samples using surface plasmon resonance.
    Xia Y; Su R; Huang R; Ding L; Wang L; Qi W; He Z
    Biosens Bioelectron; 2017 Jun; 92():266-272. PubMed ID: 28231554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid and sensitive detection of the food allergen glycinin in powdered milk using a lateral flow colloidal gold immunoassay strip test.
    Wang Y; Deng R; Zhang G; Li Q; Yang J; Sun Y; Li Z; Hu X
    J Agric Food Chem; 2015 Mar; 63(8):2172-8. PubMed ID: 25671495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles.
    Matsui J; Akamatsu K; Hara N; Miyoshi D; Nawafune H; Tamaki K; Sugimoto N
    Anal Chem; 2005 Jul; 77(13):4282-5. PubMed ID: 15987138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.