These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 27503725)
1. The role of nest surface temperatures and the brain in influencing ant metabolic rates. Andrew NR; Ghaedi B; Groenewald B J Therm Biol; 2016 Aug; 60():132-9. PubMed ID: 27503725 [TBL] [Abstract][Full Text] [Related]
2. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae). Baudier KM; Mudd AE; Erickson SC; O'Donnell S J Anim Ecol; 2015 Sep; 84(5):1322-30. PubMed ID: 26072696 [TBL] [Abstract][Full Text] [Related]
3. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change. Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604 [TBL] [Abstract][Full Text] [Related]
4. The Thermal Breadth of Nylanderia fulva (Hymenoptera: Formicidae) Is Narrower Than That of Solenopsis invicta at Three Thermal Ramping Rates: 1.0, 0.12, and 0.06°C min-1. Bentley MT; Hahn DA; Oi FM Environ Entomol; 2016 Aug; 45(4):1058-62. PubMed ID: 27252409 [TBL] [Abstract][Full Text] [Related]
5. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Kaspari M; Clay NA; Lucas J; Yanoviak SP; Kay A Glob Chang Biol; 2015 Mar; 21(3):1092-102. PubMed ID: 25242246 [TBL] [Abstract][Full Text] [Related]
6. Testing the reliability and ecological implications of ramping rates in the measurement of Critical Thermal maximum. Leong CM; Tsang TPN; Guénard B PLoS One; 2022; 17(3):e0265361. PubMed ID: 35286353 [TBL] [Abstract][Full Text] [Related]
7. Acclimation effects on critical and lethal thermal limits of workers of the Argentine ant, Linepithema humile. Jumbam KR; Jackson S; Terblanche JS; McGeoch MA; Chown SL J Insect Physiol; 2008 Jun; 54(6):1008-14. PubMed ID: 18534612 [TBL] [Abstract][Full Text] [Related]
8. Nutrition modifies critical thermal maximum of a dominant canopy ant. Bujan J; Kaspari M J Insect Physiol; 2017 Oct; 102():1-6. PubMed ID: 28830761 [TBL] [Abstract][Full Text] [Related]
9. Physiological plasticity of cardiorespiratory function in a eurythermal marine teleost, the longjaw mudsucker, Gillichthys mirabilis. Jayasundara N; Somero GN J Exp Biol; 2013 Jun; 216(Pt 11):2111-21. PubMed ID: 23678101 [TBL] [Abstract][Full Text] [Related]
10. Estimating the critical thermal maximum (CTmax) of bed bugs, Cimex lectularius: Comparing thermolimit respirometry with traditional visual methods. DeVries ZC; Kells SA; Appel AG Comp Biochem Physiol A Mol Integr Physiol; 2016 Jul; 197():52-7. PubMed ID: 26970580 [TBL] [Abstract][Full Text] [Related]
11. Thermolimit respirometry: an objective assessment of critical thermal maxima in two sympatric desert harvester ants, Pogonomyrmex rugosus and P. californicus. Lighton JR; Turner RJ J Exp Biol; 2004 May; 207(Pt 11):1903-13. PubMed ID: 15107444 [TBL] [Abstract][Full Text] [Related]
12. Variation in thermal tolerance of North American ants. Verble-Pearson RM; Gifford ME; Yanoviak SP J Therm Biol; 2015 Feb; 48():65-8. PubMed ID: 25660632 [TBL] [Abstract][Full Text] [Related]
13. Physiological responses to short-term thermal stress in mayfly ( Kim KS; Chou H; Funk DH; Jackson JK; Sweeney BW; Buchwalter DB J Exp Biol; 2017 Jul; 220(Pt 14):2598-2605. PubMed ID: 28724704 [TBL] [Abstract][Full Text] [Related]
14. Is thermal limitation the primary driver of elevational distributions? Not for montane rainforest ants in the Australian Wet Tropics. Nowrouzi S; Andersen AN; Bishop TR; Robson SKA Oecologia; 2018 Oct; 188(2):333-342. PubMed ID: 29736865 [TBL] [Abstract][Full Text] [Related]
15. Can behaviour and physiology mitigate effects of warming on ectotherms? A test in urban ants. Youngsteadt E; Prado SG; Keleher KJ; Kirchner M J Anim Ecol; 2023 Mar; 92(3):568-579. PubMed ID: 36642830 [TBL] [Abstract][Full Text] [Related]
16. Temperature tolerance and oxygen consumption of two South American tetras, Paracheirodon innessi and Hyphessobrycon herbertaxelrodi. Cooper CJ; Mueller CA; Eme J J Therm Biol; 2019 Dec; 86():102434. PubMed ID: 31789229 [TBL] [Abstract][Full Text] [Related]
17. The effect of acclimation temperature on thermal activity thresholds in polar terrestrial invertebrates. Everatt MJ; Bale JS; Convey P; Worland MR; Hayward SA J Insect Physiol; 2013 Oct; 59(10):1057-64. PubMed ID: 23973412 [TBL] [Abstract][Full Text] [Related]
18. Does social thermal regulation constrain individual thermal tolerance in an ant species? Villalta I; Oms CS; Angulo E; Molinas-González CR; Devers S; Cerdá X; Boulay R J Anim Ecol; 2020 Sep; 89(9):2063-2076. PubMed ID: 32445419 [TBL] [Abstract][Full Text] [Related]
19. Oxygen safety margins set thermal limits in an insect model system. Boardman L; Terblanche JS J Exp Biol; 2015 Jun; 218(Pt 11):1677-85. PubMed ID: 26041031 [TBL] [Abstract][Full Text] [Related]
20. Plasticity of upper thermal limits to acute and chronic temperature variation in Manduca sexta larvae. Kingsolver JG; MacLean HJ; Goddin SB; Augustine KE J Exp Biol; 2016 May; 219(Pt 9):1290-4. PubMed ID: 26944498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]