BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 27503836)

  • 1. Drosophila wing imaginal discs respond to mechanical injury via slow InsP3R-mediated intercellular calcium waves.
    Restrepo S; Basler K
    Nat Commun; 2016 Aug; 7():12450. PubMed ID: 27503836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release of Applied Mechanical Loading Stimulates Intercellular Calcium Waves in Drosophila Wing Discs.
    Narciso CE; Contento NM; Storey TJ; Hoelzle DJ; Zartman JJ
    Biophys J; 2017 Jul; 113(2):491-501. PubMed ID: 28746859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards long term cultivation of Drosophila wing imaginal discs in vitro.
    Handke B; Szabad J; Lidsky PV; Hafen E; Lehner CF
    PLoS One; 2014; 9(9):e107333. PubMed ID: 25203426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Function of Lipin in the Wing Development of
    Duy Binh T; L A Pham T; Nishihara T; Thanh Men T; Kamei K
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31277421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishing compartment boundaries in Drosophila wing imaginal discs: An interplay between selector genes, signaling pathways and cell mechanics.
    Wang J; Dahmann C
    Semin Cell Dev Biol; 2020 Nov; 107():161-169. PubMed ID: 32732129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Godzilla-dependent transcytosis promotes Wingless signalling in Drosophila wing imaginal discs.
    Yamazaki Y; Palmer L; Alexandre C; Kakugawa S; Beckett K; Gaugue I; Palmer RH; Vincent JP
    Nat Cell Biol; 2016 Apr; 18(4):451-7. PubMed ID: 26974662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pattern reorganization occurs independently of cell division during Drosophila wing disc regeneration in situ.
    Díaz-García S; Baonza A
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):13032-7. PubMed ID: 23878228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The endoplasmic reticulum unfolded protein response varies depending on the affected region of the tissue but independently from the source of stress.
    Perochon J; Grandon B; Roche D; Wintz C; Demay Y; Mignotte B; Szuplewski S; Gaumer S
    Cell Stress Chaperones; 2019 Jul; 24(4):817-824. PubMed ID: 31144193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple roles of the gene zinc finger homeodomain-2 in the development of the Drosophila wing.
    Perea D; Molohon K; Edwards K; Díaz-Benjumea FJ
    Mech Dev; 2013; 130(9-10):467-81. PubMed ID: 23811114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myoblast cytonemes mediate Wg signaling from the wing imaginal disc and Delta-Notch signaling to the air sac primordium.
    Huang H; Kornberg TB
    Elife; 2015 May; 4():e06114. PubMed ID: 25951303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dilp8 and its candidate receptor, Drl, are involved in the transdetermination of the Drosophila imaginal disc.
    Nemoto K; Masuko K; Fuse N; Kurata S
    Genes Cells; 2023 Dec; 28(12):857-867. PubMed ID: 37817293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cultivation and Live Imaging of Drosophila Imaginal Discs.
    Restrepo S; Zartman JJ; Basler K
    Methods Mol Biol; 2016; 1478():203-213. PubMed ID: 27730583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anchor negatively regulates BMP signalling to control Drosophila wing development.
    Wang XC; Liu Z; Jin LH
    Eur J Cell Biol; 2018 May; 97(4):308-317. PubMed ID: 29735293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Analysis of ESCRT-Positive Extracellular Vesicles in the Drosophila Wing Imaginal Disc.
    Matusek T; Thérond P; Fürthauer M
    Methods Mol Biol; 2019; 1998():31-47. PubMed ID: 31250292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 5'-3' exoribonuclease Pacman (Xrn1) regulates expression of the heat shock protein Hsp67Bc and the microRNA miR-277-3p in Drosophila wing imaginal discs.
    Jones CI; Grima DP; Waldron JA; Jones S; Parker HN; Newbury SF
    RNA Biol; 2013 Aug; 10(8):1345-55. PubMed ID: 23792537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The transcription factor optomotor-blind antagonizes Drosophila haltere growth by repressing decapentaplegic and hedgehog targets.
    Simon E; Guerrero I
    PLoS One; 2015; 10(3):e0121239. PubMed ID: 25793870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basement Membrane Manipulation in Drosophila Wing Discs Affects Dpp Retention but Not Growth Mechanoregulation.
    Ma M; Cao X; Dai J; Pastor-Pareja JC
    Dev Cell; 2017 Jul; 42(1):97-106.e4. PubMed ID: 28697337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative Stress Is Associated with Overgrowth in Drosophila
    Climent-Cantó P; Molnar C; Santabárbara-Ruiz P; Prieto C; Abril JF; Serras F; Gonzalez C
    Cells; 2022 Aug; 11(16):. PubMed ID: 36010619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Independent roles of Drosophila Moesin in imaginal disc morphogenesis and hedgehog signalling.
    Molnar C; de Celis JF
    Mech Dev; 2006 May; 123(5):337-51. PubMed ID: 16682173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Spalt Transcription Factors Generate the Transcriptional Landscape of the Drosophila melanogaster Wing Pouch Central Region.
    Organista MF; Martín M; de Celis JM; Barrio R; López-Varea A; Esteban N; Casado M; de Celis JF
    PLoS Genet; 2015 Aug; 11(8):e1005370. PubMed ID: 26241320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.