These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 27504247)
1. Numerical solution of the one-dimensional fractional convection diffusion equations based on Chebyshev operational matrix. Xie J; Huang Q; Yang X Springerplus; 2016; 5(1):1149. PubMed ID: 27504247 [TBL] [Abstract][Full Text] [Related]
2. Operational matrices based on the shifted fifth-kind Chebyshev polynomials for solving nonlinear variable order integro-differential equations. Jafari H; Nemati S; Ganji RM Adv Differ Equ; 2021; 2021(1):435. PubMed ID: 34630543 [TBL] [Abstract][Full Text] [Related]
3. Sinc-Chebyshev collocation method for a class of fractional diffusion-wave equations. Mao Z; Xiao A; Yu Z; Shi L ScientificWorldJournal; 2014; 2014():143983. PubMed ID: 24977177 [TBL] [Abstract][Full Text] [Related]
4. Numerical solutions and error estimations for the space fractional diffusion equation with variable coefficients via Fibonacci collocation method. Bahşı AK; Yalçınbaş S Springerplus; 2016; 5(1):1375. PubMed ID: 27610294 [TBL] [Abstract][Full Text] [Related]
5. Numerical solutions of the fractional Fisher's type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods. Saad KM; Khader MM; Gómez-Aguilar JF; Baleanu D Chaos; 2019 Feb; 29(2):023116. PubMed ID: 30823705 [TBL] [Abstract][Full Text] [Related]
6. The Use of Generalized Laguerre Polynomials in Spectral Methods for Solving Fractional Delay Differential Equations. Khader MM J Comput Nonlinear Dyn; 2013 Oct; 8(4):41018-NaN. PubMed ID: 24891846 [TBL] [Abstract][Full Text] [Related]
7. Orthonormal piecewise Vieta-Lucas functions for the numerical solution of the one- and two-dimensional piecewise fractional Galilei invariant advection-diffusion equations. Heydari MH; Razzaghi M; Baleanu D J Adv Res; 2023 Jul; 49():175-190. PubMed ID: 36220592 [TBL] [Abstract][Full Text] [Related]
8. Extension of Operational Matrix Technique for the Solution of Nonlinear System of Caputo Fractional Differential Equations Subjected to Integral Type Boundary Constrains. Khalil H; Khalil M; Hashim I; Agarwal P Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573779 [TBL] [Abstract][Full Text] [Related]
9. Method of approximations for the convection-dominated anomalous diffusion equation in a rectangular plate using high-resolution compact discretization. Jha N; Verma S MethodsX; 2022; 9():101853. PubMed ID: 36164430 [TBL] [Abstract][Full Text] [Related]
10. A generalized Chebyshev operational method for Volterra integro-partial differential equations with weakly singular kernels. Sadri K; Amilo D; Hinçal E; Hosseini K; Salahshour S Heliyon; 2024 Mar; 10(5):e27260. PubMed ID: 38562493 [TBL] [Abstract][Full Text] [Related]
11. Spectral shifted Chebyshev collocation technique with residual power series algorithm for time fractional problems. Rida SZ; Arafa AAM; Hussein HS; Ameen IG; Mostafa MMM Sci Rep; 2024 Apr; 14(1):8683. PubMed ID: 38622192 [TBL] [Abstract][Full Text] [Related]
12. An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus. Srivastava HM; Saad KM; Khader MM Chaos Solitons Fractals; 2020 Nov; 140():110174. PubMed ID: 32834654 [TBL] [Abstract][Full Text] [Related]
13. Stable numerical results to a class of time-space fractional partial differential equations via spectral method. Shah K; Jarad F; Abdeljawad T J Adv Res; 2020 Sep; 25():39-48. PubMed ID: 32922972 [TBL] [Abstract][Full Text] [Related]
14. A space-time spectral collocation algorithm for the variable order fractional wave equation. Bhrawy AH; Doha EH; Alzaidy JF; Abdelkawy MA Springerplus; 2016; 5(1):1220. PubMed ID: 27536504 [TBL] [Abstract][Full Text] [Related]
15. Data for numerical solution of Caputo's and Riemann-Liouville's fractional differential equations. Betancur-Herrera DE; Muñoz-Galeano N Data Brief; 2020 Jun; 30():105375. PubMed ID: 32258266 [TBL] [Abstract][Full Text] [Related]
16. A Legendre tau-spectral method for solving time-fractional heat equation with nonlocal conditions. Bhrawy AH; Alghamdi MA ScientificWorldJournal; 2014; 2014():706296. PubMed ID: 25057507 [TBL] [Abstract][Full Text] [Related]
18. New operational matrices for solving fractional differential equations on the half-line. Bhrawy AH; Taha TM; Alzahrani EO; Baleanu D; Alzahrani AA PLoS One; 2015; 10(5):e0126620. PubMed ID: 25996369 [TBL] [Abstract][Full Text] [Related]
19. Solvability and stability of a fractional dynamical system of the growth of COVID-19 with approximate solution by fractional Chebyshev polynomials. Hadid SB; Ibrahim RW; Altulea D; Momani S Adv Differ Equ; 2020; 2020(1):338. PubMed ID: 32834813 [TBL] [Abstract][Full Text] [Related]
20. Parameter identification of fractional order linear system based on Haar wavelet operational matrix. Li Y; Meng X; Zheng B; Ding Y ISA Trans; 2015 Nov; 59():79-84. PubMed ID: 26345708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]