BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27504715)

  • 1. Shuttling of (deoxy-) purine nucleotides between compartments of the diatom Phaeodactylum tricornutum.
    Chu L; Gruber A; Ast M; Schmitz-Esser S; Altensell J; Neuhaus HE; Kroth PG; Haferkamp I
    New Phytol; 2017 Jan; 213(1):193-205. PubMed ID: 27504715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diatom plastids depend on nucleotide import from the cytosol.
    Ast M; Gruber A; Schmitz-Esser S; Neuhaus HE; Kroth PG; Horn M; Haferkamp I
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3621-6. PubMed ID: 19221027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide Transport and Metabolism in Diatoms.
    Gruber A; Haferkamp I
    Biomolecules; 2019 Nov; 9(12):. PubMed ID: 31766535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate specificity of plastid phosphate transporters in a non-photosynthetic diatom and its implication in evolution of red alga-derived complex plastids.
    Moog D; Nozawa A; Tozawa Y; Kamikawa R
    Sci Rep; 2020 Jan; 10(1):1167. PubMed ID: 31980711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo characterization of diatom multipartite plastid targeting signals.
    Apt KE; Zaslavkaia L; Lippmeier JC; Lang M; Kilian O; Wetherbee R; Grossman AR; Kroth PG
    J Cell Sci; 2002 Nov; 115(Pt 21):4061-9. PubMed ID: 12356911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids.
    Kilian O; Kroth PG
    Plant J; 2005 Jan; 41(2):175-83. PubMed ID: 15634195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms.
    Hempel F; Bullmann L; Lau J; Zauner S; Maier UG
    Mol Biol Evol; 2009 Aug; 26(8):1781-90. PubMed ID: 19377060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of High-Quality Plastids from the Diatom Phaeodactylum tricornutum.
    Hu F; Yin W; Huang T; Hu H
    Methods Mol Biol; 2024; 2776():177-183. PubMed ID: 38502504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for glycoprotein transport into complex plastids.
    Peschke M; Moog D; Klingl A; Maier UG; Hempel F
    Proc Natl Acad Sci U S A; 2013 Jun; 110(26):10860-5. PubMed ID: 23754425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo pyrimidine nucleotide synthesis mainly occurs outside of plastids, but a previously undiscovered nucleobase importer provides substrates for the essential salvage pathway in Arabidopsis.
    Witz S; Jung B; Fürst S; Möhlmann T
    Plant Cell; 2012 Apr; 24(4):1549-59. PubMed ID: 22474184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New mechanistic insights into pre-protein transport across the second outermost plastid membrane of diatoms.
    Hempel F; Felsner G; Maier UG
    Mol Microbiol; 2010 May; 76(3):793-801. PubMed ID: 20345650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein transport into "complex" diatom plastids utilizes two different targeting signals.
    Lang M; Apt KE; Kroth PG
    J Biol Chem; 1998 Nov; 273(47):30973-8. PubMed ID: 9812993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The physical and functional borders of transit peptide-like sequences in secondary endosymbionts.
    Felsner G; Sommer MS; Maier UG
    BMC Plant Biol; 2010 Oct; 10():223. PubMed ID: 20958984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis.
    Kroth PG; Chiovitti A; Gruber A; Martin-Jezequel V; Mock T; Parker MS; Stanley MS; Kaplan A; Caron L; Weber T; Maheswari U; Armbrust EV; Bowler C
    PLoS One; 2008 Jan; 3(1):e1426. PubMed ID: 18183306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized mRuby3 is a Suitable Fluorescent Protein for in vivo Co-localization Studies with GFP in the Diatom Phaeodactylum tricornutum.
    Marter P; Schmidt S; Kiontke S; Moog D
    Protist; 2020 Feb; 171(1):125715. PubMed ID: 32062589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative characterization of putative chitin deacetylases from Phaeodactylum tricornutum and Thalassiosira pseudonana highlights the potential for distinct chitin-based metabolic processes in diatoms.
    Shao Z; Thomas Y; Hembach L; Xing X; Duan D; Moerschbacher BM; Bulone V; Tirichine L; Bowler C
    New Phytol; 2019 Mar; 221(4):1890-1905. PubMed ID: 30288745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomes reveal the lipid metabolic network in the complex plastid of Phaeodactylum tricornutum.
    Huang T; Pan Y; Maréchal E; Hu H
    Plant J; 2024 Jan; 117(2):385-403. PubMed ID: 37733835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenine nucleotide transport in plants: much more than a mitochondrial issue.
    Haferkamp I; Fernie AR; Neuhaus HE
    Trends Plant Sci; 2011 Sep; 16(9):507-15. PubMed ID: 21622019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif.
    Gruber A; Vugrinec S; Hempel F; Gould SB; Maier UG; Kroth PG
    Plant Mol Biol; 2007 Jul; 64(5):519-30. PubMed ID: 17484021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization and Evolution of Putative Triose Phosphate Translocators in the Diatom Phaeodactylum tricornutum.
    Moog D; Rensing SA; Archibald JM; Maier UG; Ullrich KK
    Genome Biol Evol; 2015 Oct; 7(11):2955-69. PubMed ID: 26454011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.