These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27504715)

  • 21. Isolation of Plastid Fractions from the Diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum.
    Schober AF; Flori S; Finazzi G; Kroth PG; Bártulos CR
    Methods Mol Biol; 2018; 1829():189-203. PubMed ID: 29987723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting proteins to diatom plastids involves transport through an endoplasmic reticulum.
    Bhaya D; Grossman A
    Mol Gen Genet; 1991 Oct; 229(3):400-4. PubMed ID: 1944228
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determining the Subcellular Localization of Proteins in the Different Membranes of Diatom Secondary Plastid.
    Liu X; Gong Y
    Methods Mol Biol; 2024; 2776():185-196. PubMed ID: 38502505
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein-protein interactions indicate composition of a 480 kDa SELMA complex in the second outermost membrane of diatom complex plastids.
    Lau JB; Stork S; Moog D; Schulz J; Maier UG
    Mol Microbiol; 2016 Apr; 100(1):76-89. PubMed ID: 26712034
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrastructure of the Periplastidial Compartment of the Diatom Phaeodactylum tricornutum.
    Flori S; Jouneau PH; Finazzi G; Maréchal E; Falconet D
    Protist; 2016 Jun; 167(3):254-67. PubMed ID: 27179349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage.
    Gruber A; Rocap G; Kroth PG; Armbrust EV; Mock T
    Plant J; 2015 Feb; 81(3):519-28. PubMed ID: 25438865
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Non-photosynthetic Diatom Reveals Early Steps of Reductive Evolution in Plastids.
    Kamikawa R; Moog D; Zauner S; Tanifuji G; Ishida KI; Miyashita H; Mayama S; Hashimoto T; Maier UG; Archibald JM; Inagaki Y
    Mol Biol Evol; 2017 Sep; 34(9):2355-2366. PubMed ID: 28549159
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms.
    Gould SB; Sommer MS; Kroth PG; Gile GH; Keeling PJ; Maier UG
    Mol Biol Evol; 2006 Dec; 23(12):2413-22. PubMed ID: 16971693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Localization and targeting mechanisms of two chloroplastic beta-carbonic anhydrases in the marine diatom Phaeodactylum tricornutum.
    Kitao Y; Harada H; Matsuda Y
    Physiol Plant; 2008 May; 133(1):68-77. PubMed ID: 18298418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Der1-mediated preprotein import into the periplastid compartment of chromalveolates?
    Sommer MS; Gould SB; Lehmann P; Gruber A; Przyborski JM; Maier UG
    Mol Biol Evol; 2007 Apr; 24(4):918-28. PubMed ID: 17244602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduction-dependent siderophore assimilation in a model pennate diatom.
    Coale TH; Moosburner M; Horák A; Oborník M; Barbeau KA; Allen AE
    Proc Natl Acad Sci U S A; 2019 Nov; 116(47):23609-23617. PubMed ID: 31685631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Presequence acquisition during secondary endocytobiosis and the possible role of introns.
    Kilian O; Kroth PG
    J Mol Evol; 2004 Jun; 58(6):712-21. PubMed ID: 15461428
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solute transporters of the plastid envelope membrane.
    Weber AP; Schwacke R; Flügge UI
    Annu Rev Plant Biol; 2005; 56():133-64. PubMed ID: 15862092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A metabolic, phylogenomic and environmental atlas of diatom plastid transporters from the model species
    Liu S; Storti M; Finazzi G; Bowler C; Dorrell RG
    Front Plant Sci; 2022; 13():950467. PubMed ID: 36212359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The presence and localization of thioredoxins in diatoms, unicellular algae of secondary endosymbiotic origin.
    Weber T; Gruber A; Kroth PG
    Mol Plant; 2009 May; 2(3):468-77. PubMed ID: 19825630
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intracellular distribution of the reductive and oxidative pentose phosphate pathways in two diatoms.
    Gruber A; Weber T; Bártulos CR; Vugrinec S; Kroth PG
    J Basic Microbiol; 2009 Feb; 49(1):58-72. PubMed ID: 19206144
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterologous signals allow efficient targeting of a nuclear-encoded fusion protein to plastids and endoplasmic reticulum in diverse plant species.
    Gnanasambandam A; Polkinghorne IG; Birch RG
    Plant Biotechnol J; 2007 Mar; 5(2):290-6. PubMed ID: 17309684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mapping of subcellular local pH in the marine diatom Phaeodactylum tricornutum.
    Shimakawa G; Yashiro E; Matsuda Y
    Physiol Plant; 2023; 175(6):e14086. PubMed ID: 38148208
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nucleotide sugars, nucleotide sulfate, and ATP transporters of the endoplasmic reticulum and Golgi apparatus.
    Berninsone P; Hirschberg CB
    Ann N Y Acad Sci; 1998 Apr; 842():91-9. PubMed ID: 9599298
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Internal plastid-targeting signal found in a RubisCO small subunit protein of a chlorarachniophyte alga.
    Hirakawa Y; Ishida K
    Plant J; 2010 Nov; 64(3):402-10. PubMed ID: 21049565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.