These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 27505044)
1. OxaD: A Versatile Indolic Nitrone Synthase from the Marine-Derived Fungus Penicillium oxalicum F30. Newmister SA; Gober CM; Romminger S; Yu F; Tripathi A; Parra LL; Williams RM; Berlinck RG; Joullié MM; Sherman DH J Am Chem Soc; 2016 Sep; 138(35):11176-84. PubMed ID: 27505044 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of Nitrone Formation by a Flavin-Dependent Monooxygenase. Johnson SB; Li H; Valentino H; Sobrado P Biochemistry; 2024 Jun; 63(11):1445-1459. PubMed ID: 38779817 [TBL] [Abstract][Full Text] [Related]
3. Silencing of a second dimethylallyltryptophan synthase of Penicillium roqueforti reveals a novel clavine alkaloid gene cluster. Fernández-Bodega Á; Álvarez-Álvarez R; Liras P; Martín JF Appl Microbiol Biotechnol; 2017 Aug; 101(15):6111-6121. PubMed ID: 28620689 [TBL] [Abstract][Full Text] [Related]
4. A mutasynthesis approach with a Penicillium chrysogenum ΔroqA strain yields new roquefortine D analogues. Ouchaou K; Maire F; Salo O; Ali H; Hankemeier T; van der Marel GA; Filippov DV; Bovenberg RA; Vreeken RJ; Driessen AJ; Overkleeft HS Chembiochem; 2015 Apr; 16(6):915-23. PubMed ID: 25766600 [TBL] [Abstract][Full Text] [Related]
5. Roquefortine/oxaline biosynthesis pathway metabolites in Penicillium ser. Corymbifera: in planta production and implications for competitive fitness. Overy DP; Nielsen KF; Smedsgaard J J Chem Ecol; 2005 Oct; 31(10):2373-90. PubMed ID: 16195849 [TBL] [Abstract][Full Text] [Related]
6. Evolutionary formation of gene clusters by reorganization: the meleagrin/roquefortine paradigm in different fungi. Martín JF; Liras P Appl Microbiol Biotechnol; 2016 Feb; 100(4):1579-1587. PubMed ID: 26668029 [TBL] [Abstract][Full Text] [Related]
7. A natural short pathway synthesizes roquefortine C but not meleagrin in three different Penicillium roqueforti strains. Kosalková K; Domínguez-Santos R; Coton M; Coton E; García-Estrada C; Liras P; Martín JF Appl Microbiol Biotechnol; 2015 Sep; 99(18):7601-12. PubMed ID: 25998659 [TBL] [Abstract][Full Text] [Related]
8. A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. García-Estrada C; Ullán RV; Albillos SM; Fernández-Bodega MÁ; Durek P; von Döhren H; Martín JF Chem Biol; 2011 Nov; 18(11):1499-512. PubMed ID: 22118684 [TBL] [Abstract][Full Text] [Related]
9. A branched biosynthetic pathway is involved in production of roquefortine and related compounds in Penicillium chrysogenum. Ali H; Ries MI; Nijland JG; Lankhorst PP; Hankemeier T; Bovenberg RA; Vreeken RJ; Driessen AJ PLoS One; 2013; 8(6):e65328. PubMed ID: 23776469 [TBL] [Abstract][Full Text] [Related]
10. Novel key metabolites reveal further branching of the roquefortine/meleagrin biosynthetic pathway. Ries MI; Ali H; Lankhorst PP; Hankemeier T; Bovenberg RA; Driessen AJ; Vreeken RJ J Biol Chem; 2013 Dec; 288(52):37289-95. PubMed ID: 24225953 [TBL] [Abstract][Full Text] [Related]
11. Penicillium persicinum, a new griseofulvin, chrysogine and roquefortine C producing species from Qinghai Province, China. Wang L; Zhou HB; Frisvad JC; Samson RA Antonie Van Leeuwenhoek; 2004 Aug; 86(2):173-9. PubMed ID: 15280651 [TBL] [Abstract][Full Text] [Related]
12. Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses. García-Estrada C; Martín JF Appl Microbiol Biotechnol; 2016 Oct; 100(19):8303-13. PubMed ID: 27554495 [TBL] [Abstract][Full Text] [Related]
13. The developmental regulator Pcz1 affects the production of secondary metabolites in the filamentous fungus Penicillium roqueforti. Rojas-Aedo JF; Gil-Durán C; Goity A; Vaca I; Levicán G; Larrondo LF; Chávez R Microbiol Res; 2018; 212-213():67-74. PubMed ID: 29853169 [TBL] [Abstract][Full Text] [Related]
14. An improved synthesis of alpha,beta-unsaturated nitrones relevant to the stephacidins and analogs thereof. Hafensteiner BD; Escribano M; Petricci E; Baran PS Bioorg Med Chem Lett; 2009 Jul; 19(14):3808-10. PubMed ID: 19423345 [TBL] [Abstract][Full Text] [Related]
15. Unveiling sequential late-stage methyltransferase reactions in the meleagrin/oxaline biosynthetic pathway. Newmister SA; Romminger S; Schmidt JJ; Williams RM; Smith JL; Berlinck RGS; Sherman DH Org Biomol Chem; 2018 Sep; 16(35):6450-6459. PubMed ID: 30141817 [TBL] [Abstract][Full Text] [Related]
16. The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Kosalková K; García-Estrada C; Ullán RV; Godio RP; Feltrer R; Teijeira F; Mauriz E; Martín JF Biochimie; 2009 Feb; 91(2):214-25. PubMed ID: 18952140 [TBL] [Abstract][Full Text] [Related]
17. Effect of a heterotrimeric G protein alpha subunit on conidia germination, stress response, and roquefortine C production in Penicillium roqueforti. García-Rico RO; Chávez R; Fierro F; Martín JF Int Microbiol; 2009 Jun; 12(2):123-9. PubMed ID: 19784932 [TBL] [Abstract][Full Text] [Related]
18. Using roquefortine C as a biomarker for penitrem A intoxication. Tiwary AK; Puschner B; Poppenga RH J Vet Diagn Invest; 2009 Mar; 21(2):237-9. PubMed ID: 19286504 [TBL] [Abstract][Full Text] [Related]
19. Dehydrogenation of indoline by cytochrome P450 enzymes: a novel "aromatase" process. Sun H; Ehlhardt WJ; Kulanthaivel P; Lanza DL; Reilly CA; Yost GS J Pharmacol Exp Ther; 2007 Aug; 322(2):843-51. PubMed ID: 17502430 [TBL] [Abstract][Full Text] [Related]
20. The heterotrimeric Galpha protein pga1 regulates biosynthesis of penicillin, chrysogenin and roquefortine in Penicillium chrysogenum. García-Rico RO; Fierro F; Mauriz E; Gómez A; Fernández-Bodega MÁ; Martín JF Microbiology (Reading); 2008 Nov; 154(Pt 11):3567-3578. PubMed ID: 18957609 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]