These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 27505173)
1. Transcriptional Profiling of Cultured, Embryonic Epicardial Cells Identifies Novel Genes and Signaling Pathways Regulated by TGFβR3 In Vitro. DeLaughter DM; Clark CR; Christodoulou DC; Seidman CE; Baldwin HS; Seidman JG; Barnett JV PLoS One; 2016; 11(8):e0159710. PubMed ID: 27505173 [TBL] [Abstract][Full Text] [Related]
2. The cytoplasmic domain of TGFβR3 through its interaction with the scaffolding protein, GIPC, directs epicardial cell behavior. Sánchez NS; Hill CR; Love JD; Soslow JH; Craig E; Austin AF; Brown CB; Czirok A; Camenisch TD; Barnett JV Dev Biol; 2011 Oct; 358(2):331-43. PubMed ID: 21871877 [TBL] [Abstract][Full Text] [Related]
3. BMP2 signals loss of epithelial character in epicardial cells but requires the Type III TGFβ receptor to promote invasion. Hill CR; Sanchez NS; Love JD; Arrieta JA; Hong CC; Brown CB; Austin AF; Barnett JV Cell Signal; 2012 May; 24(5):1012-22. PubMed ID: 22237159 [TBL] [Abstract][Full Text] [Related]
4. TGFβ and BMP-2 regulate epicardial cell invasion via TGFβR3 activation of the Par6/Smurf1/RhoA pathway. Sánchez NS; Barnett JV Cell Signal; 2012 Feb; 24(2):539-548. PubMed ID: 22033038 [TBL] [Abstract][Full Text] [Related]
6. Common pathways regulate Type III TGFβ receptor-dependent cell invasion in epicardial and endocardial cells. Clark CR; Robinson JY; Sanchez NS; Townsend TA; Arrieta JA; Merryman WD; Trykall DZ; Olivey HE; Hong CC; Barnett JV Cell Signal; 2016 Jun; 28(6):688-98. PubMed ID: 26970186 [TBL] [Abstract][Full Text] [Related]
7. Type III TGFβ receptor and Src direct hyaluronan-mediated invasive cell motility. Allison P; Espiritu D; Barnett JV; Camenisch TD Cell Signal; 2015 Mar; 27(3):453-9. PubMed ID: 25499979 [TBL] [Abstract][Full Text] [Related]
8. Effects of TGFbeta2 on wild-type and Tgfbr3 knockout mouse fetal testis. Sarraj MA; Escalona RM; Western P; Findlay JK; Stenvers KL Biol Reprod; 2013 Mar; 88(3):66. PubMed ID: 23303681 [TBL] [Abstract][Full Text] [Related]
9. Coronary vessel development is dependent on the type III transforming growth factor beta receptor. Compton LA; Potash DA; Brown CB; Barnett JV Circ Res; 2007 Oct; 101(8):784-91. PubMed ID: 17704211 [TBL] [Abstract][Full Text] [Related]
10. Type III transforming growth factor beta receptor regulates vascular and osteoblast development during palatogenesis. Hill CR; Jacobs BH; Brown CB; Barnett JV; Goudy SL Dev Dyn; 2015 Feb; 244(2):122-33. PubMed ID: 25382630 [TBL] [Abstract][Full Text] [Related]
11. Endocardial cell epithelial-mesenchymal transformation requires Type III TGFβ receptor interaction with GIPC. Townsend TA; Robinson JY; How T; DeLaughter DM; Blobe GC; Barnett JV Cell Signal; 2012 Jan; 24(1):247-56. PubMed ID: 21945156 [TBL] [Abstract][Full Text] [Related]
12. TGFβ2-mediated production of hyaluronan is important for the induction of epicardial cell differentiation and invasion. Craig EA; Austin AF; Vaillancourt RR; Barnett JV; Camenisch TD Exp Cell Res; 2010 Dec; 316(20):3397-405. PubMed ID: 20633555 [TBL] [Abstract][Full Text] [Related]
13. TGFBR3 loss and consequences in prostate cancer. Sharifi N; Hurt EM; Kawasaki BT; Farrar WL Prostate; 2007 Feb; 67(3):301-11. PubMed ID: 17192875 [TBL] [Abstract][Full Text] [Related]
14. Transforming Growth Factor-β Receptor III is a Potential Regulator of Ischemia-Induced Cardiomyocyte Apoptosis. Sun F; Li X; Duan WQ; Tian W; Gao M; Yang J; Wu XY; Huang D; Xia W; Han YN; Wang JX; Liu YX; Dong CJ; Zhao D; Ban T; Chu WF J Am Heart Assoc; 2017 May; 6(6):. PubMed ID: 28559372 [TBL] [Abstract][Full Text] [Related]
15. Expression patterns of Tgfbeta1-3 associate with myocardialisation of the outflow tract and the development of the epicardium and the fibrous heart skeleton. Molin DG; Bartram U; Van der Heiden K; Van Iperen L; Speer CP; Hierck BP; Poelmann RE; Gittenberger-de-Groot AC Dev Dyn; 2003 Jul; 227(3):431-44. PubMed ID: 12815630 [TBL] [Abstract][Full Text] [Related]
16. Retinoic acid signaling promotes the cytoskeletal rearrangement of embryonic epicardial cells. Wang S; Yu J; Jones JW; Pierzchalski K; Kane MA; Trainor PA; Xavier-Neto J; Moise AR FASEB J; 2018 Jul; 32(7):3765-3781. PubMed ID: 29447006 [TBL] [Abstract][Full Text] [Related]
17. Differential expression of TGFBR3 (betaglycan) in mouse ovary and testis during gonadogenesis. Sarraj MA; Chua HK; Umbers A; Loveland KL; Findlay JK; Stenvers KL Growth Factors; 2007 Oct; 25(5):334-45. PubMed ID: 18236212 [TBL] [Abstract][Full Text] [Related]
18. Betaglycan alters NFκB-TGFβ2 cross talk to reduce survival of human granulosa tumor cells. Bilandzic M; Chu S; Wang Y; Tan HL; Fuller PJ; Findlay JK; Stenvers KL Mol Endocrinol; 2013 Mar; 27(3):466-79. PubMed ID: 23322721 [TBL] [Abstract][Full Text] [Related]
19. Primary and immortalized mouse epicardial cells undergo differentiation in response to TGFbeta. Austin AF; Compton LA; Love JD; Brown CB; Barnett JV Dev Dyn; 2008 Feb; 237(2):366-76. PubMed ID: 18213583 [TBL] [Abstract][Full Text] [Related]
20. Proteomic characterization of epicardial-myocardial signaling reveals novel regulatory networks including a role for NF-κB in epicardial EMT. Li Y; Urban A; Midura D; Simon HG; Wang QT PLoS One; 2017; 12(3):e0174563. PubMed ID: 28358917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]