These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 27505263)
1. Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness. Bento CPM; Yang X; Gort G; Xue S; van Dam R; Zomer P; Mol HGJ; Ritsema CJ; Geissen V Sci Total Environ; 2016 Dec; 572():301-311. PubMed ID: 27505263 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of glyphosate and AMPA in the soil surface layer of glyphosate-resistant crop cultivations in the loess Pampas of Argentina. Bento CPM; van der Hoeven S; Yang X; Riksen MMJPM; Mol HGJ; Ritsema CJ; Geissen V Environ Pollut; 2019 Jan; 244():323-331. PubMed ID: 30343233 [TBL] [Abstract][Full Text] [Related]
3. Non-point source pollution of glyphosate and AMPA in a rural basin from the southeast Pampas, Argentina. Okada E; Pérez D; De Gerónimo E; Aparicio V; Massone H; Costa JL Environ Sci Pollut Res Int; 2018 May; 25(15):15120-15132. PubMed ID: 29556978 [TBL] [Abstract][Full Text] [Related]
4. Mechanistic modeling indicates rapid glyphosate dissipation and sorption-driven persistence of its metabolite AMPA in soil. Wimmer B; Langarica-Fuentes A; Schwarz E; Kleindienst S; Huhn C; Pagel H J Environ Qual; 2023 Mar; 52(2):393-405. PubMed ID: 36417923 [TBL] [Abstract][Full Text] [Related]
5. Biogenic transport of glyphosate in the presence of LDPE microplastics: A mesocosm experiment. Yang X; Lwanga EH; Bemani A; Gertsen H; Salanki T; Guo X; Fu H; Xue S; Ritsema C; Geissen V Environ Pollut; 2019 Feb; 245():829-835. PubMed ID: 30502712 [TBL] [Abstract][Full Text] [Related]
6. Transport of Glyphosate and Aminomethylphosphonic Acid under Two Soil Management Practices in an Italian Vineyard. Napoli M; Marta AD; Zanchi CA; Orlandini S J Environ Qual; 2016 Sep; 45(5):1713-1721. PubMed ID: 27695744 [TBL] [Abstract][Full Text] [Related]
7. Direct Determination of Glyphosate and its Metabolite AMPA in Soil Using Mixed-Mode Solid-Phase Purification and LC-MS/MS Determination on a Hypercarb Column. Zhang P; Rose M; Van Zwieten L J AOAC Int; 2019 May; 102(3):952-965. PubMed ID: 30616711 [No Abstract] [Full Text] [Related]
8. Glyphosate and AMPA distribution in wind-eroded sediment derived from loess soil. Bento CPM; Goossens D; Rezaei M; Riksen M; Mol HGJ; Ritsema CJ; Geissen V Environ Pollut; 2017 Jan; 220(Pt B):1079-1089. PubMed ID: 27876225 [TBL] [Abstract][Full Text] [Related]
9. Measurement and modelling of glyphosate fate compared with that of herbicides replaced as a result of the introduction of glyphosate-resistant oilseed rape. Mamy L; Gabrielle B; Barriuso E Pest Manag Sci; 2008 Mar; 64(3):262-75. PubMed ID: 18205189 [TBL] [Abstract][Full Text] [Related]
10. Influence of microplastic addition on glyphosate decay and soil microbial activities in Chinese loess soil. Yang X; Bento CPM; Chen H; Zhang H; Xue S; Lwanga EH; Zomer P; Ritsema CJ; Geissen V Environ Pollut; 2018 Nov; 242(Pt A):338-347. PubMed ID: 29990941 [TBL] [Abstract][Full Text] [Related]
11. Laboratory and lysimeter studies of glyphosate and aminomethylphosphonic acid in a sand and a clay soil. Bergström L; Börjesson E; Stenström J J Environ Qual; 2011; 40(1):98-108. PubMed ID: 21488498 [TBL] [Abstract][Full Text] [Related]
12. Short-term transport of glyphosate with erosion in Chinese loess soil--a flume experiment. Yang X; Wang F; Bento CPM; Xue S; Gai L; van Dam R; Mol H; Ritsema CJ; Geissen V Sci Total Environ; 2015 Apr; 512-513():406-414. PubMed ID: 25644837 [TBL] [Abstract][Full Text] [Related]
13. Analysis of glyphosate degradation in a soil microcosm. la Cecilia D; Maggi F Environ Pollut; 2018 Feb; 233():201-207. PubMed ID: 29078124 [TBL] [Abstract][Full Text] [Related]
14. Soil hydro-physical variables and crop residues determinate runoff, soil loss, and glyphosate and AMPA concentration in the aqueous phase under simulated rainfall events. Sainz D; Behrends Kraemer F; Carfagno P; Eiza M; Chagas C J Environ Qual; 2024; 53(5):629-642. PubMed ID: 38982723 [TBL] [Abstract][Full Text] [Related]
15. Adsorption-desorption and leaching potential of glyphosate and aminomethylphosphonic acid in acidic Malaysian soil amended with cow dung and rice husk ash. Garba J; Samsuri AW; Othman R; Ahmad Hamdani MS Environ Monit Assess; 2018 Oct; 190(11):676. PubMed ID: 30368595 [TBL] [Abstract][Full Text] [Related]
16. Investigation of the presence of glyphosate and its major metabolite AMPA in Greek soils. Karasali H; Pavlidis G; Marousopoulou A Environ Sci Pollut Res Int; 2019 Dec; 26(36):36308-36321. PubMed ID: 31713822 [TBL] [Abstract][Full Text] [Related]
17. The different behaviors of glyphosate and AMPA in compost-amended soil. Erban T; Stehlik M; Sopko B; Markovic M; Seifrtova M; Halesova T; Kovaricek P Chemosphere; 2018 Sep; 207():78-83. PubMed ID: 29772427 [TBL] [Abstract][Full Text] [Related]
18. Fate and availability of glyphosate and AMPA in agricultural soil. Simonsen L; Fomsgaard IS; Svensmark B; Spliid NH J Environ Sci Health B; 2008 Jun; 43(5):365-75. PubMed ID: 18576216 [TBL] [Abstract][Full Text] [Related]
19. Modeling the mobility of glyphosate from two contrasting agricultural soils in laboratory column experiments. Berzins A; Jansons M; Kalneniece K; Shvirksts K; Afanasjeva K; Kasparinskis R; Grube M; Bartkevics V; Muter O J Environ Sci Health B; 2019; 54(7):539-548. PubMed ID: 31264931 [TBL] [Abstract][Full Text] [Related]
20. Glyphosate and aminomethylphosphonic acid chronic risk assessment for soil biota. von Mérey G; Manson PS; Mehrsheikh A; Sutton P; Levine SL Environ Toxicol Chem; 2016 Nov; 35(11):2742-2752. PubMed ID: 27028189 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]