These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 27505377)

  • 1. High-resolution and wide-bandwidth light intensity fiber optic displacement sensor for MEMS metrology.
    Orłowska K; Świątkowski M; Kunicki P; Kopiec D; Gotszalk T
    Appl Opt; 2016 Aug; 55(22):5960-6. PubMed ID: 27505377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metrological 2iOF fibre-optic system for position and displacement measurement with 31 pm resolution.
    Orłowska K; Świątkowski M; Kunicki P; Gotszalk T
    Rev Sci Instrum; 2018 Apr; 89(4):045001. PubMed ID: 29716376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2.4 ng/√Hz low-noise fiber-optic MEMS seismic accelerometer.
    Qu Z; Ouyang H; Liu H; Hu C; Tu LC; Zhou Z
    Opt Lett; 2022 Feb; 47(3):718-721. PubMed ID: 35103716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MEMS-Based Reflective Intensity-Modulated Fiber-Optic Sensor for Pressure Measurements.
    Zhou N; Jia P; Liu J; Ren Q; An G; Liang T; Xiong J
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32326548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-speed broadband FTIR system using MEMS.
    Pelin Ayerden N; Aygun U; Holmstrom ST; Olcer S; Can B; Stehle JL; Urey H
    Appl Opt; 2014 Nov; 53(31):7267-72. PubMed ID: 25402886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical fiber Fabry-Pérot micro-displacement sensor for MEMS in-plane motion stage.
    Kim YS; Dagalakis NG; Choi YM
    Microelectron Eng; 2018; 187-188():. PubMed ID: 33060873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of a Low-Cost Miniature Inertial Sensor Module and a Fiber-Optic Gyroscope for Clinical Balance and Gait Assessments.
    Roetenberg D; Höller C; Mattmüller K; Degen M; Allum JH
    J Healthc Eng; 2019; 2019():9816961. PubMed ID: 31662836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Testing of a Non-Contact MEMS Voltage Sensor Based on Single-Crystal Silicon Piezoresistive Effect.
    Li J; Liu J; Peng C; Liu X; Wu Z; Zheng F
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Cost, High-Performance Fiber Optic Fabry⁻Perot Sensor for Ultrasonic Wave Detection.
    Li H; Li D; Xiong C; Si W; Fu C; Yuan P; Yu Y
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fiber optic displacement sensor with a large extendable measurement range while maintaining equally high sensitivity, linearity, and accuracy.
    Lee YG; Kim YY; Kim CG
    Rev Sci Instrum; 2012 Apr; 83(4):045002. PubMed ID: 22559566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Capacitive MEMS Inclinometer Sensor with Wide Dynamic Range and Improved Sensitivity.
    Xu H; Zhao Y; Zhang K; Jiang K
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32630795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MEMS accelerometer embedded in a self-mixing displacement sensor for parasitic vibration compensation.
    Zabit U; Bernal OD; Bosch T; Bony F
    Opt Lett; 2011 Mar; 36(5):612-4. PubMed ID: 21368924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.
    Battista L; Sciuto SA; Scorza A
    Rev Sci Instrum; 2013 Mar; 84(3):035005. PubMed ID: 23556844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Fabrication of an Integrated Hollow Concave Cilium MEMS Cardiac Sound Sensor.
    Wang B; Shi P; Yang Y; Cui J; Zhang G; Wang R; Zhang W; He C; Li Y; Wang S
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmable synchronization enhanced MEMS resonant accelerometer.
    Xu L; Wang S; Jiang Z; Wei X
    Microsyst Nanoeng; 2020; 6():63. PubMed ID: 34567674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fiber-optic interferometer with subpicometer resolution for dc and low-frequency displacement measurement.
    Smith DT; Pratt JR; Howard LP
    Rev Sci Instrum; 2009 Mar; 80(3):035105. PubMed ID: 19334950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of Spring Softening and Hardening in the Squared Daisy.
    Gratuze M; Alameh AH; Nabavi S; Nabki F
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33923665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Fabrication of a Kirigami-Inspired Electrothermal MEMS Scanner with Large Displacement.
    Hashimoto M; Taguchi Y
    Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32235583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fiber Optic Distributed Sensors for High-resolution Temperature Field Mapping.
    Lomperski S; Gerardi C; Lisowski D
    J Vis Exp; 2016 Nov; (117):. PubMed ID: 27842349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-fiber optic displacement sensing system for an Ilizarov transverse tibial bone transport device.
    Liang H; Jiang Y; Wang X; Lewis E; Wang P
    Appl Opt; 2020 Mar; 59(7):2077-2084. PubMed ID: 32225730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.