These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1840 related articles for article (PubMed ID: 27505691)
1. Photochemical Stereocontrol Using Tandem Photoredox-Chiral Lewis Acid Catalysis. Yoon TP Acc Chem Res; 2016 Oct; 49(10):2307-2315. PubMed ID: 27505691 [TBL] [Abstract][Full Text] [Related]
2. Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality. Zhang L; Meggers E Acc Chem Res; 2017 Feb; 50(2):320-330. PubMed ID: 28128920 [TBL] [Abstract][Full Text] [Related]
3. A dual-catalysis approach to enantioselective [2 + 2] photocycloadditions using visible light. Du J; Skubi KL; Schultz DM; Yoon TP Science; 2014 Apr; 344(6182):392-6. PubMed ID: 24763585 [TBL] [Abstract][Full Text] [Related]
4. Enantioselective conjugate additions of α-amino radicals via cooperative photoredox and Lewis acid catalysis. Ruiz Espelt L; McPherson IS; Wiensch EM; Yoon TP J Am Chem Soc; 2015 Feb; 137(7):2452-5. PubMed ID: 25668687 [TBL] [Abstract][Full Text] [Related]
5. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles. Yu J; Shi F; Gong LZ Acc Chem Res; 2011 Nov; 44(11):1156-71. PubMed ID: 21800828 [TBL] [Abstract][Full Text] [Related]
12. Synthetic Utilization of α-Aminoalkyl Radicals and Related Species in Visible Light Photoredox Catalysis. Nakajima K; Miyake Y; Nishibayashi Y Acc Chem Res; 2016 Sep; 49(9):1946-56. PubMed ID: 27505299 [TBL] [Abstract][Full Text] [Related]
13. A General Copper-based Photoredox Catalyst for Organic Synthesis: Scope, Application in Natural Product Synthesis and Mechanistic Insights. Deldaele C; Michelet B; Baguia H; Kajouj S; Romero E; Moucheron C; Evano G Chimia (Aarau); 2018 Sep; 72(9):621-629. PubMed ID: 30257738 [TBL] [Abstract][Full Text] [Related]
14. Enantioselective rhodium/ruthenium photoredox catalysis en route to chiral 1,2-aminoalcohols. Ma J; Harms K; Meggers E Chem Commun (Camb); 2016 Aug; 52(66):10183-6. PubMed ID: 27462824 [TBL] [Abstract][Full Text] [Related]
15. Enantioselective Synthesis of γ-Oxycarbonyl Motifs by Conjugate Addition of Photogenerated α-Alkoxy Radicals. Dong X; Li QY; Yoon TP Org Lett; 2021 Aug; 23(15):5703-5708. PubMed ID: 34296877 [TBL] [Abstract][Full Text] [Related]
16. Asymmetric photoredox transition-metal catalysis activated by visible light. Huo H; Shen X; Wang C; Zhang L; Röse P; Chen LA; Harms K; Marsch M; Hilt G; Meggers E Nature; 2014 Nov; 515(7525):100-3. PubMed ID: 25373679 [TBL] [Abstract][Full Text] [Related]
17. Asymmetric Reactions Enabled by Cooperative Enantioselective Amino- and Lewis Acid Catalysis. Cozzi PG; Gualandi A; Potenti S; Calogero F; Rodeghiero G Top Curr Chem (Cham); 2019 Nov; 378(1):1. PubMed ID: 31761979 [TBL] [Abstract][Full Text] [Related]
18. Preparation of visible-light-activated metal complexes and their use in photoredox/nickel dual catalysis. Kelly CB; Patel NR; Primer DN; Jouffroy M; Tellis JC; Molander GA Nat Protoc; 2017 Mar; 12(3):472-492. PubMed ID: 28151464 [TBL] [Abstract][Full Text] [Related]
19. Merging visible-light photoredox and Lewis acid catalysis for the functionalization and arylation of glycine derivatives and peptides. Zhu S; Rueping M Chem Commun (Camb); 2012 Dec; 48(98):11960-2. PubMed ID: 23128983 [TBL] [Abstract][Full Text] [Related]
20. Chiral Diol-Based Organocatalysts in Enantioselective Reactions. Nguyen TN; Chen PA; Setthakarn K; May JA Molecules; 2018 Sep; 23(9):. PubMed ID: 30208621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]