These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 27505733)

  • 1. Large area compatible broadband superabsorber surfaces in the VIS-NIR spectrum utilizing metal-insulator-metal stack and plasmonic nanoparticles.
    Dereshgi SA; Okyay AK
    Opt Express; 2016 Aug; 24(16):17644-53. PubMed ID: 27505733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonically enhanced metal-insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications.
    Abedini Dereshgi S; Sisman Z; Topalli K; Okyay AK
    Sci Rep; 2017 Feb; 7():42349. PubMed ID: 28181590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture.
    Ghobadi A; Dereshgi SA; Hajian H; Bozok B; Butun B; Ozbay E
    Sci Rep; 2017 Jul; 7(1):4755. PubMed ID: 28684879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-Area, Cost-Effective, Ultra-Broadband Perfect Absorber Utilizing Manganese in Metal-Insulator-Metal Structure.
    Aalizadeh M; Khavasi A; Butun B; Ozbay E
    Sci Rep; 2018 Jun; 8(1):9162. PubMed ID: 29907773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-Broadband, Lithography-Free, and Large-Scale Compatible Perfect Absorbers: The Optimum Choice of Metal layers in Metal-Insulator Multilayer Stacks.
    Abedini Dereshgi S; Ghobadi A; Hajian H; Butun B; Ozbay E
    Sci Rep; 2017 Nov; 7(1):14872. PubMed ID: 29093519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dispersion engineering of plasmonic nanocomposite for ultrathin broadband optical absorber.
    Feng P; Li WD; Zhang W
    Opt Express; 2015 Feb; 23(3):2328-38. PubMed ID: 25836100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-thin broadband nanostructured insulator-metal-insulator-metal plasmonic light absorber.
    Hubarevich A; Kukhta A; Demir HV; Sun X; Wang H
    Opt Express; 2015 Apr; 23(8):9753-61. PubMed ID: 25969014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband light absorption of an Al semishell-MIM nanostrucure in the UV to near-infrared regions.
    Matsumori K; Fujimura R
    Opt Lett; 2018 Jun; 43(12):2981-2984. PubMed ID: 29905739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-absorption grating-insulator-metal structures.
    Chen X; He D; Wu J
    Appl Opt; 2021 Aug; 60(24):7480-7484. PubMed ID: 34613037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene on metal-insulator-metal-based plasmonic metamaterials at infrared wavelengths.
    Ogawa S; Shimatani M; Fukushima S; Okuda S; Matsumoto K
    Opt Express; 2018 Mar; 26(5):5665-5674. PubMed ID: 29529768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation.
    Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-Insulator-Metal-Based Plasmonic Metamaterial Absorbers at Visible and Infrared Wavelengths: A Review.
    Ogawa S; Kimata M
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29558454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the Absorption Spectra of an Ultra-Wideband Metamaterial Absorber in the Visible and Near-Infrared Regions.
    Tharwat MM; Alsulami AR; Mahros AM
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A further comparison of graphene and thin metal layers for plasmonics.
    He X; Gao P; Shi W
    Nanoscale; 2016 May; 8(19):10388-97. PubMed ID: 27138936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms.
    Fann CH; Zhang J; ElKabbash M; Donaldson WR; Michael Campbell E; Guo C
    Opt Express; 2019 Sep; 27(20):27917-27926. PubMed ID: 31684552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
    Li Z; Butun S; Aydin K
    ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bismuth plasmonics for extraordinary light absorption in deep sub-wavelength geometries.
    Ozbay I; Ghobadi A; Butun B; Turhan-Sayan G
    Opt Lett; 2020 Feb; 45(3):686-689. PubMed ID: 32004285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disordered Nanohole Patterns in Metal-Insulator Multilayer for Ultra-broadband Light Absorption: Atomic Layer Deposition for Lithography Free Highly repeatable Large Scale Multilayer Growth.
    Ghobadi A; Hajian H; Dereshgi SA; Bozok B; Butun B; Ozbay E
    Sci Rep; 2017 Nov; 7(1):15079. PubMed ID: 29118435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Sensitive Color Tunablility by Scalable Nanomorphology of a Dielectric Layer in Liquid-Permeable Metal-Insulator-Metal Structure.
    Yu ES; Lee SH; Bae YG; Choi J; Lee D; Kim C; Lee T; Lee SY; Lee SD; Ryu YS
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38581-38587. PubMed ID: 30295452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical analysis of the characteristic impedance in metal-insulator-metal plasmonic transmission lines.
    Nejati H; Beirami A
    Opt Lett; 2012 Mar; 37(6):1050-2. PubMed ID: 22446220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.