These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 27505809)
1. Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser. Zhou P; Zhang F; Guo Q; Pan S Opt Express; 2016 Aug; 24(16):18460-7. PubMed ID: 27505809 [TBL] [Abstract][Full Text] [Related]
2. Photonic generation of linearly chirped microwave waveforms using a monolithic integrated three-section laser. Li J; Pu T; Zheng J; Zhang Y; Shi Y; Zhu H; Li Y; Zhang X; Zhao G; Zhou Y; Chen X Opt Express; 2018 Apr; 26(8):9676-9685. PubMed ID: 29715916 [TBL] [Abstract][Full Text] [Related]
3. Tunable triangular frequency modulated microwave waveform generation with improved linearity using an optically injected semiconductor laser. Zhang B; Zhu D; Zhou P; Xie C; Pan S Appl Opt; 2019 Jul; 58(20):5479-5485. PubMed ID: 31504017 [TBL] [Abstract][Full Text] [Related]
4. Hybrid Fourier-domain mode-locked laser for ultra-wideband linearly chirped microwave waveform generation. Tang J; Zhu B; Zhang W; Li M; Pan S; Yao J Nat Commun; 2020 Jul; 11(1):3814. PubMed ID: 32732873 [TBL] [Abstract][Full Text] [Related]
5. Bandwidth-enhanced LFM waveform generator based on dynamic control of an optically injected semiconductor laser. Zhou P; Zhu J; Zhang R; Li N Opt Lett; 2022 Aug; 47(15):3864-3867. PubMed ID: 35913334 [TBL] [Abstract][Full Text] [Related]
6. Frequency-definable linearly chirped microwave waveform generation by a Fourier domain mode locking optoelectronic oscillator based on stimulated Brillouin scattering. Zeng Z; Zhang L; Zhang Y; Zhang Z; Zhang S; Zhang Y; Sun B; Liu Y Opt Express; 2020 Apr; 28(9):13861-13870. PubMed ID: 32403852 [TBL] [Abstract][Full Text] [Related]
7. Bandwidth superposition of linearly chirped microwave waveforms based on a Fourier domain mode-locked optoelectronic oscillator. Li G; Hao T; Li W; Li M Opt Express; 2021 Oct; 29(22):36977-36987. PubMed ID: 34809095 [TBL] [Abstract][Full Text] [Related]
8. A simple photonic generation of linearly chirped microwave pulse with large time-bandwidth product and high compression ratio. Gao H; Lei C; Chen M; Xing F; Chen H; Xie S Opt Express; 2013 Oct; 21(20):23107-15. PubMed ID: 24104226 [TBL] [Abstract][Full Text] [Related]
9. Photonic generation of tunable dual-chirp microwave waveforms using a dual-beam optically injected semiconductor laser. Zhou P; Chen H; Li N; Zhang R; Pan S Opt Lett; 2020 Mar; 45(6):1342-1345. PubMed ID: 32163961 [TBL] [Abstract][Full Text] [Related]
10. Photonic generation of a microwave waveform with an ultra-long temporal duration using a frequency-shifting dispersive loop. Cao R; Wang G; Li M; Zhang J; Yao J Opt Express; 2022 Feb; 30(4):4737-4747. PubMed ID: 35209448 [TBL] [Abstract][Full Text] [Related]
11. Generation of NLFM microwave waveforms based on controlled period-one dynamics of semiconductor lasers. Zhou P; Zhang R; Li K; Jiang Z; Mu P; Bao H; Li N Opt Express; 2020 Oct; 28(22):32647-32656. PubMed ID: 33114946 [TBL] [Abstract][Full Text] [Related]
12. Simple multi-band linearly frequency-modulated signal generation with a multiplying bandwidth based on a gain-switching laser. Wu G; Zheng J; Pu T; Li J; Zhang X; Chen S; Zhao J; Zhang Y; Chen X Appl Opt; 2023 Mar; 62(7):1822-1828. PubMed ID: 37132931 [TBL] [Abstract][Full Text] [Related]
13. Optical frequency comb generation using cascaded injection of semiconductor lasers. Tang HT; Hung YH Opt Lett; 2023 Dec; 48(24):6436-6439. PubMed ID: 38099767 [TBL] [Abstract][Full Text] [Related]
14. Experimental generation of linearly chirped 350 GHz band pulses with a bandwidth beyond 60 GHz. Zhang H; Wang S; Jia S; Yu X; Jin X; Zheng S; Chi H; Zhang X Opt Lett; 2017 Dec; 42(24):5242-5245. PubMed ID: 29240183 [TBL] [Abstract][Full Text] [Related]
16. Generation of a widely tunable linearly chirped microwave waveform based on spectral filtering and unbalanced dispersion. Zhang H; Zou W; Chen J Opt Lett; 2015 Mar; 40(6):1085-8. PubMed ID: 25768188 [TBL] [Abstract][Full Text] [Related]
17. Breaking the limitation of mode building time in an optoelectronic oscillator. Hao T; Cen Q; Dai Y; Tang J; Li W; Yao J; Zhu N; Li M Nat Commun; 2018 May; 9(1):1839. PubMed ID: 29743475 [TBL] [Abstract][Full Text] [Related]
18. Dual-linear chirp microwave signal generation by using single-beam injection to a DFB semiconductor laser and optical heterodyne technique. Jin Y; Lin X; Wu Z; Yue D; Zhang F; Zhang L; Jiang Z; Xia G Opt Express; 2022 Jun; 30(12):21698-21709. PubMed ID: 36224883 [TBL] [Abstract][Full Text] [Related]
19. Photonic generation of low phase noise arbitrary chirped microwave waveforms with large time-bandwidth product. Xie W; Xia Z; Zhou Q; Shi H; Dong Y; Hu W Opt Express; 2015 Jul; 23(14):18070-9. PubMed ID: 26191866 [TBL] [Abstract][Full Text] [Related]
20. Numerical investigation of photonic microwave generation in an optically injected semiconductor laser subject to filtered optical feedback. Xue C; Ji S; Hong Y; Jiang N; Li H; Qiu K Opt Express; 2019 Feb; 27(4):5065-5082. PubMed ID: 30876111 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]