BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 27506156)

  • 1. Variability in the number of abdominal leucokinergic neurons in adult Drosophila melanogaster.
    Alvarez-Rivero J; Moris-Sanz M; Estacio-Gómez A; Montoliu-Nerin M; Díaz-Benjumea FJ; Herrero P
    J Comp Neurol; 2017 Feb; 525(3):639-660. PubMed ID: 27506156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental organization of central neurons in the adult Drosophila ventral nervous system.
    Shepherd D; Sahota V; Court R; Williams DW; Truman JW
    J Comp Neurol; 2019 Oct; 527(15):2573-2598. PubMed ID: 30919956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin and specification of the brain leucokinergic neurons of Drosophila: similarities to and differences from abdominal leucokinergic neurons.
    Herrero P; Estacio-Gómez A; Moris-Sanz M; Alvarez-Rivero J; Diaz-Benjumea FJ
    Dev Dyn; 2014 Mar; 243(3):402-14. PubMed ID: 24155257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of Hox genes in the patterning of the central nervous system of Drosophila.
    Estacio-Gómez A; Díaz-Benjumea FJ
    Fly (Austin); 2014; 8(1):26-32. PubMed ID: 24406332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental analysis of the dopamine-containing neurons of the Drosophila brain.
    Hartenstein V; Cruz L; Lovick JK; Guo M
    J Comp Neurol; 2017 Feb; 525(2):363-379. PubMed ID: 27350102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 5-hydroxymethylcytosine marks postmitotic neural cells in the adult and developing vertebrate central nervous system.
    Diotel N; Mérot Y; Coumailleau P; Gueguen MM; Sérandour AA; Salbert G; Kah O
    J Comp Neurol; 2017 Feb; 525(3):478-497. PubMed ID: 27414756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adult-specific insulin-producing neurons in Drosophila melanogaster.
    Ohhara Y; Kobayashi S; Yamakawa-Kobayashi K; Yamanaka N
    J Comp Neurol; 2018 Jun; 526(8):1351-1367. PubMed ID: 29424424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface topography during neural stem cell differentiation regulates cell migration and cell morphology.
    Czeisler C; Short A; Nelson T; Gygli P; Ortiz C; Catacutan FP; Stocker B; Cronin J; Lannutti J; Winter J; Otero JJ
    J Comp Neurol; 2016 Dec; 524(17):3485-3502. PubMed ID: 27418162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct functions of human numb isoforms revealed by misexpression in the neural stem cell lineage in the Drosophila larval brain.
    Toriya M; Tokunaga A; Sawamoto K; Nakao K; Okano H
    Dev Neurosci; 2006; 28(1-2):142-55. PubMed ID: 16508311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Astrocytic glutamate transport regulates a Drosophila CNS synapse that lacks astrocyte ensheathment.
    MacNamee SE; Liu KE; Gerhard S; Tran CT; Fetter RD; Cardona A; Tolbert LP; Oland LA
    J Comp Neurol; 2016 Jul; 524(10):1979-98. PubMed ID: 27073064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bithorax-complex genes sculpt the pattern of leucokinergic neurons in the Drosophila central nervous system.
    Estacio-Gómez A; Moris-Sanz M; Schäfer AK; Perea D; Herrero P; Díaz-Benjumea FJ
    Development; 2013 May; 140(10):2139-48. PubMed ID: 23633511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 5HTR3A-driven GFP labels immature olfactory sensory neurons.
    Finger TE; Bartel DL; Shultz N; Goodson NB; Greer CA
    J Comp Neurol; 2017 May; 525(7):1743-1755. PubMed ID: 28152579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A genetic cascade involving klumpfuss, nab and castor specifies the abdominal leucokinergic neurons in the Drosophila CNS.
    Benito-Sipos J; Estacio-Gómez A; Moris-Sanz M; Baumgardt M; Thor S; Díaz-Benjumea FJ
    Development; 2010 Oct; 137(19):3327-36. PubMed ID: 20823069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HOXA5 localization in postnatal and adult mouse brain is suggestive of regulatory roles in postmitotic neurons.
    Lizen B; Hutlet B; Bissen D; Sauvegarde D; Hermant M; Ahn MT; Gofflot F
    J Comp Neurol; 2017 Apr; 525(5):1155-1175. PubMed ID: 27650319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution characterization of a PACAP-EGFP transgenic mouse model for mapping PACAP-expressing neurons.
    Condro MC; Matynia A; Foster NN; Ago Y; Rajbhandari AK; Van C; Jayaram B; Parikh S; Diep AL; Nguyen E; May V; Dong HW; Waschek JA
    J Comp Neurol; 2016 Dec; 524(18):3827-3848. PubMed ID: 27197019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis.
    Morona R; Ferran JL; Puelles L; González A
    J Comp Neurol; 2017 Mar; 525(4):715-752. PubMed ID: 27539385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroblast entry into quiescence is regulated intrinsically by the combined action of spatial Hox proteins and temporal identity factors.
    Tsuji T; Hasegawa E; Isshiki T
    Development; 2008 Dec; 135(23):3859-69. PubMed ID: 18948419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mTOR pathway component Unkempt regulates neural stem cell and neural progenitor cell cycle in the Drosophila central nervous system.
    Maierbrugger KT; Sousa-Nunes R; Bateman JM
    Dev Biol; 2020 May; 461(1):55-65. PubMed ID: 31978396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroanatomical details of the lateral neurons of Drosophila melanogaster support their functional role in the circadian system.
    Schubert FK; Hagedorn N; Yoshii T; Helfrich-Förster C; Rieger D
    J Comp Neurol; 2018 May; 526(7):1209-1231. PubMed ID: 29424420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stem Cell-Intrinsic, Seven-up-Triggered Temporal Factor Gradients Diversify Intermediate Neural Progenitors.
    Ren Q; Yang CP; Liu Z; Sugino K; Mok K; He Y; Ito M; Nern A; Otsuna H; Lee T
    Curr Biol; 2017 May; 27(9):1303-1313. PubMed ID: 28434858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.