These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27506467)

  • 21. Effect of post-annealing on the plasma etching of graphene-coated-copper.
    Hui LS; Whiteway E; Hilke M; Turak A
    Faraday Discuss; 2014; 173():79-93. PubMed ID: 25465275
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reducing the graphene grain density in three steps.
    Hsieh YP; Chu YH; Tsai HG; Hofmann M
    Nanotechnology; 2016 Mar; 27(10):105602. PubMed ID: 26861850
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly uniform growth of monolayer graphene by chemical vapor deposition on Cu-Ag alloy catalysts.
    Shin HA; Ryu J; Cho SP; Lee EK; Cho S; Lee C; Joo YC; Hong BH
    Phys Chem Chem Phys; 2014 Feb; 16(7):3087-94. PubMed ID: 24399098
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Concurrent fast growth of sub-centimeter single-crystal graphene with controlled nucleation density in a confined channel.
    Wu R; Pan J; Ou X; Zhang Q; Ding Y; Sheng P; Luo Z
    Nanoscale; 2017 Jul; 9(27):9631-9640. PubMed ID: 28665430
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review of theoretical study of graphene chemical vapor deposition synthesis on metals: nucleation, growth, and the role of hydrogen and oxygen.
    Habib MR; Liang T; Yu X; Pi X; Liu Y; Xu M
    Rep Prog Phys; 2018 Mar; 81(3):036501. PubMed ID: 29355108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation.
    Wang H; Wang G; Bao P; Yang S; Zhu W; Xie X; Zhang WJ
    J Am Chem Soc; 2012 Feb; 134(8):3627-30. PubMed ID: 22324740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical vapor deposition of graphene single crystals.
    Yan Z; Peng Z; Tour JM
    Acc Chem Res; 2014 Apr; 47(4):1327-37. PubMed ID: 24527957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Significant enhancement of the electrical transport properties of graphene films by controlling the surface roughness of Cu foils before and during chemical vapor deposition.
    Lee D; Kwon GD; Kim JH; Moyen E; Lee YH; Baik S; Pribat D
    Nanoscale; 2014 Nov; 6(21):12943-51. PubMed ID: 25233143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of Single-Crystal Graphene on Copper Foils Using a Low-Nucleation-Density Region in a Quartz Boat.
    Yang K; Liu J; Jiang R; Gong Y; Zeng B; Yi Z; Gao Q; Yang J; Chi F; Liu L
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large-area single-crystal graphene grown on a recrystallized Cu(111) surface by using a hole-pocket method.
    Phan HD; Jung J; Kim Y; Huynh VN; Lee C
    Nanoscale; 2016 Jul; 8(28):13781-9. PubMed ID: 27381252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of in-plane and stacked graphene/hexagonal boron nitride heterostructures by combining with ion beam sputtering deposition and chemical vapor deposition.
    Meng JH; Zhang XW; Wang HL; Ren XB; Jin CH; Yin ZG; Liu X; Liu H
    Nanoscale; 2015 Oct; 7(38):16046-53. PubMed ID: 26371688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding and Controlling Cu-Catalyzed Graphene Nucleation: The Role of Impurities, Roughness, and Oxygen Scavenging.
    Braeuninger-Weimer P; Brennan B; Pollard AJ; Hofmann S
    Chem Mater; 2016 Dec; 28(24):8905-8915. PubMed ID: 28133416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface.
    Zhang X; Wang L; Xin J; Yakobson BI; Ding F
    J Am Chem Soc; 2014 Feb; 136(8):3040-7. PubMed ID: 24499486
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth of millimeter-size single crystal graphene on Cu foils by circumfluence chemical vapor deposition.
    Wang C; Chen W; Han C; Wang G; Tang B; Tang C; Wang Y; Zou W; Chen W; Zhang XA; Qin S; Chang S; Wang L
    Sci Rep; 2014 Apr; 4():4537. PubMed ID: 24686949
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of Ultra-Smooth Cu Surface for High-Quality Graphene Synthesis.
    Zhan L; Wang Y; Chang H; Stehle R; Xu J; Gao L; Zhang W; Jia Y; Qing F; Li X
    Nanoscale Res Lett; 2018 Oct; 13(1):340. PubMed ID: 30361958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous graphene films synthesized at low temperatures by introducing coronene as nucleation seeds.
    Wu T; Ding G; Shen H; Wang H; Sun L; Zhu Y; Jiang D; Xie X
    Nanoscale; 2013 Jun; 5(12):5456-61. PubMed ID: 23666147
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasmooth metallic foils for growth of high quality graphene by chemical vapor deposition.
    Procházka P; Mach J; Bischoff D; Lišková Z; Dvořák P; Vaňatka M; Simonet P; Varlet A; Hemzal D; Petrenec M; Kalina L; Bartošík M; Ensslin K; Varga P; Čechal J; Šikola T
    Nanotechnology; 2014 May; 25(18):185601. PubMed ID: 24739598
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatially Controlled Nucleation of Single-Crystal Graphene on Cu Assisted by Stacked Ni.
    Ding D; Solís-Fernández P; Hibino H; Ago H
    ACS Nano; 2016 Dec; 10(12):11196-11204. PubMed ID: 28024365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tailored CVD graphene coating as a transparent and flexible gas barrier.
    Seo TH; Lee S; Cho H; Chandramohan S; Suh EK; Lee HS; Bae SK; Kim SM; Park M; Lee JK; Kim MJ
    Sci Rep; 2016 Apr; 6():24143. PubMed ID: 27063180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.