These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 27506469)

  • 1. IPMiner: hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction.
    Pan X; Fan YX; Yan J; Shen HB
    BMC Genomics; 2016 Aug; 17():582. PubMed ID: 27506469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Deep Learning Framework for Robust and Accurate Prediction of ncRNA-Protein Interactions Using Evolutionary Information.
    Yi HC; You ZH; Huang DS; Li X; Jiang TH; Li LP
    Mol Ther Nucleic Acids; 2018 Jun; 11():337-344. PubMed ID: 29858068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BGFE: A Deep Learning Model for ncRNA-Protein Interaction Predictions Based on Improved Sequence Information.
    Zhan ZH; Jia LN; Zhou Y; Li LP; Yi HC
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30813451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RPiRLS: Quantitative Predictions of RNA Interacting with Any Protein of Known Sequence.
    Shen WJ; Cui W; Chen D; Zhang J; Xu J
    Molecules; 2018 Feb; 23(3):. PubMed ID: 29495575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RPITER: A Hierarchical Deep Learning Framework for ncRNA⁻Protein Interaction Prediction.
    Peng C; Han S; Zhang H; Li Y
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30832218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in Computational Methodologies for Classification and Sub-Cellular Locality Prediction of Non-Coding RNAs.
    Asim MN; Ibrahim MA; Imran Malik M; Dengel A; Ahmed S
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DM-RPIs: Predicting ncRNA-protein interactions using stacked ensembling strategy.
    Cheng S; Zhang L; Tan J; Gong W; Li C; Zhang X
    Comput Biol Chem; 2019 Dec; 83():107088. PubMed ID: 31330489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EDLMFC: an ensemble deep learning framework with multi-scale features combination for ncRNA-protein interaction prediction.
    Wang J; Zhao Y; Gong W; Liu Y; Wang M; Huang X; Tan J
    BMC Bioinformatics; 2021 Mar; 22(1):133. PubMed ID: 33740884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep forest ensemble learning for classification of alignments of non-coding RNA sequences based on multi-view structure representations.
    Li Y; Zhang Q; Liu Z; Wang C; Han S; Ma Q; Du W
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33367506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA-binding protein recognition based on multi-view deep feature and multi-label learning.
    Yang H; Deng Z; Pan X; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32808039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RPI-EDLCN: An Ensemble Deep Learning Framework Based on Capsule Network for ncRNA-Protein Interaction Prediction.
    Li X; Qu W; Yan J; Tan J
    J Chem Inf Model; 2024 Apr; 64(7):2221-2235. PubMed ID: 37158609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ncRNA Coding Potential Prediction Using BiLSTM and Transformer Encoder-Based Model.
    Zhang J; Lu H; Jiang Y; Ma Y; Deng L
    J Chem Inf Model; 2024 Aug; 64(16):6712-6722. PubMed ID: 39120528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NPI-GNN: Predicting ncRNA-protein interactions with deep graph neural networks.
    Shen ZA; Luo T; Zhou YK; Yu H; Du PF
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RPI-SE: a stacking ensemble learning framework for ncRNA-protein interactions prediction using sequence information.
    Yi HC; You ZH; Wang MN; Guo ZH; Wang YB; Zhou JR
    BMC Bioinformatics; 2020 Feb; 21(1):60. PubMed ID: 32070279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NPI-DCGNN: An Accurate Tool for Identifying ncRNA-Protein Interactions Using a Dual-Channel Graph Neural Network.
    Zhang X; Zhao L; Chai Z; Wu H; Yang W; Li C; Jiang Y; Liu Q
    J Comput Biol; 2024 Aug; 31(8):742-756. PubMed ID: 38923911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Computational-Based Method for Predicting Drug-Target Interactions by Using Stacked Autoencoder Deep Neural Network.
    Wang L; You ZH; Chen X; Xia SX; Liu F; Yan X; Zhou Y; Song KJ
    J Comput Biol; 2018 Mar; 25(3):361-373. PubMed ID: 28891684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of the RBP binding sites on lncRNAs using the high-order nucleotide encoding convolutional neural network.
    Zhang SW; Wang Y; Zhang XX; Wang JQ
    Anal Biochem; 2019 Oct; 583():113364. PubMed ID: 31323206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The lncLocator: a subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier.
    Cao Z; Pan X; Yang Y; Huang Y; Shen HB
    Bioinformatics; 2018 Jul; 34(13):2185-2194. PubMed ID: 29462250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biogenesis, Functions, Interactions, and Resources of Non-Coding RNAs in Plants.
    Chao H; Hu Y; Zhao L; Xin S; Ni Q; Zhang P; Chen M
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.