BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 27506517)

  • 1. Electromicrobiology: realities, grand challenges, goals and predictions.
    Nealson KH; Rowe AR
    Microb Biotechnol; 2016 Sep; 9(5):595-600. PubMed ID: 27506517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromicrobiology.
    Lovley DR
    Annu Rev Microbiol; 2012; 66():391-409. PubMed ID: 22746334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nature's conductors: what can microbial multi-heme cytochromes teach us about electron transport and biological energy conversion?
    Chong GW; Karbelkar AA; El-Naggar MY
    Curr Opin Chem Biol; 2018 Dec; 47():7-17. PubMed ID: 30015234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction studies between periplasmic cytochromes provide insights into extracellular electron transfer pathways of
    Fernandes AP; Nunes TC; Paquete CM; Salgueiro CA
    Biochem J; 2017 Feb; 474(5):797-808. PubMed ID: 28093471
    [No Abstract]   [Full Text] [Related]  

  • 5. Cytochromes in Extracellular Electron Transfer in
    Ueki T
    Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33741623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative metatranscriptomics reveals extracellular electron transfer pathways conferring microbial adaptivity to surface redox potential changes.
    Ishii S; Suzuki S; Tenney A; Nealson KH; Bretschger O
    ISME J; 2018 Dec; 12(12):2844-2863. PubMed ID: 30050163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing Microbial Extracellular Respiration Ability Using Riboflavin.
    Zhang F; Wu JH; Yu HQ
    Anal Chem; 2020 Aug; 92(15):10606-10612. PubMed ID: 32633502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metagenomic insights into the ecology and physiology of microbes in bioelectrochemical systems.
    Kouzuma A; Ishii S; Watanabe K
    Bioresour Technol; 2018 May; 255():302-307. PubMed ID: 29426790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms.
    Zhao J; Li F; Cao Y; Zhang X; Chen T; Song H; Wang Z
    Biotechnol Adv; 2021 Dec; 53():107682. PubMed ID: 33326817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic dielectrophoresis illuminates the relationship between microbial cell envelope polarizability and electrochemical activity.
    Wang Q; Jones AD; Gralnick JA; Lin L; Buie CR
    Sci Adv; 2019 Jan; 5(1):eaat5664. PubMed ID: 30746438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile One-Step Strategy for Highly Boosted Microbial Extracellular Electron Transfer of the Genus Shewanella.
    Wang Y; Lv M; Meng Q; Ding C; Jiang L; Liu H
    ACS Nano; 2016 Jun; 10(6):6331-7. PubMed ID: 27196945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoelectronic Investigation Reveals the Electrochemical Basis of Electrical Conductivity in Shewanella and Geobacter.
    Ding M; Shiu HY; Li SL; Lee CK; Wang G; Wu H; Weiss NO; Young TD; Weiss PS; Wong GC; Nealson KH; Huang Y; Duan X
    ACS Nano; 2016 Nov; 10(11):9919-9926. PubMed ID: 27787972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4.
    Ding CM; Lv ML; Zhu Y; Jiang L; Liu H
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1446-51. PubMed ID: 25470810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resilience, Dynamics, and Interactions within a Model Multispecies Exoelectrogenic-Biofilm Community.
    Prokhorova A; Sturm-Richter K; Doetsch A; Gescher J
    Appl Environ Microbiol; 2017 Mar; 83(6):. PubMed ID: 28087529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential-dependent extracellular electron transfer pathways of exoelectrogens.
    Liu DF; Li WW
    Curr Opin Chem Biol; 2020 Dec; 59():140-146. PubMed ID: 32769012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tactic Response of Shewanella oneidensis MR-1 toward Insoluble Electron Acceptors.
    Oram J; Jeuken LJC
    mBio; 2019 Jan; 10(1):. PubMed ID: 30647155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioelectricity (electromicrobiology) and sustainability.
    Nealson KH
    Microb Biotechnol; 2017 Sep; 10(5):1114-1119. PubMed ID: 28805347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shewanella putrefaciens CN32 outer membrane cytochromes MtrC and UndA reduce electron shuttles to produce electricity in microbial fuel cells.
    Wu X; Zou L; Huang Y; Qiao Y; Long ZE; Liu H; Li CM
    Enzyme Microb Technol; 2018 Aug; 115():23-28. PubMed ID: 29859599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-Line Raman Spectroscopic Study of Cytochromes' Redox State of Biofilms in Microbial Fuel Cells.
    Krige A; Sjöblom M; Ramser K; Christakopoulos P; Rova U
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30759821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-going applications of Shewanella species in microbial electrochemical system for bioenergy, bioremediation and biosensing.
    Zou L; Huang YH; Long ZE; Qiao Y
    World J Microbiol Biotechnol; 2018 Dec; 35(1):9. PubMed ID: 30569420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.