These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

558 related articles for article (PubMed ID: 27506548)

  • 1. Transcriptome profiling of the rumen epithelium of beef cattle differing in residual feed intake.
    Kong RS; Liang G; Chen Y; Stothard P; Guan le L
    BMC Genomics; 2016 Aug; 17():592. PubMed ID: 27506548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ruminal transcript abundance of the centromere-associated protein E gene may influence residual feed intake in beef steers.
    Rathert AR; Meyer AM; Foote AP; Kern RJ; Cunningham-Hollinger HC; Kuehn LA; Lindholm-Perry AK
    Anim Genet; 2020 Jun; 51(3):453-456. PubMed ID: 32166767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ruminal expression of the NQO1, RGS5, and ACAT1 genes may be indicators of feed efficiency in beef steers.
    Kern RJ; Zarek CM; Lindholm-Perry AK; Kuehn LA; Snelling WM; Freetly HC; Cunningham HC; Meyer AM
    Anim Genet; 2017 Feb; 48(1):90-92. PubMed ID: 27611366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A transcriptome multi-tissue analysis identifies biological pathways and genes associated with variations in feed efficiency of growing pigs.
    Gondret F; Vincent A; Houée-Bigot M; Siegel A; Lagarrigue S; Causeur D; Gilbert H; Louveau I
    BMC Genomics; 2017 Mar; 18(1):244. PubMed ID: 28327084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RAPID COMMUNICATION: Residual feed intake in beef cattle is associated with differences in protein turnover and nutrient transporters in ruminal epithelium.
    Elolimy AA; Abdel-Hamied E; Hu L; McCann JC; Shike DW; Loor JJ
    J Anim Sci; 2019 Apr; 97(5):2181-2187. PubMed ID: 30806449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene co-expression networks from RNA sequencing of dairy cattle identifies genes and pathways affecting feed efficiency.
    Salleh SM; Mazzoni G; Løvendahl P; Kadarmideen HN
    BMC Bioinformatics; 2018 Dec; 19(1):513. PubMed ID: 30558534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global liver gene expression differences in Nelore steers with divergent residual feed intake phenotypes.
    Tizioto PC; Coutinho LL; Decker JE; Schnabel RD; Rosa KO; Oliveira PS; Souza MM; Mourão GB; Tullio RR; Chaves AS; Lanna DP; Zerlotini-Neto A; Mudadu MA; Taylor JF; Regitano LC
    BMC Genomics; 2015 Mar; 16(1):242. PubMed ID: 25887532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of rumen microbiome and immune genes expression of crossbred beef steers with divergent residual feed intake phenotypes.
    Taiwo G; Morenikeji OB; Idowu M; Sidney T; Adekunle A; Cervantes AP; Peters S; Ogunade IM
    BMC Genomics; 2024 Mar; 25(1):245. PubMed ID: 38443809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-weaning blood transcriptomic differences between Yorkshire pigs divergently selected for residual feed intake.
    Liu H; Nguyen YT; Nettleton D; Dekkers JC; Tuggle CK
    BMC Genomics; 2016 Jan; 17():73. PubMed ID: 26801403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial protein gene expression and the oxidative phosphorylation pathway associated with feed efficiency and energy balance in dairy cattle.
    Dorji J; MacLeod IM; Chamberlain AJ; Vander Jagt CJ; Ho PN; Khansefid M; Mason BA; Prowse-Wilkins CP; Marett LC; Wales WJ; Cocks BG; Pryce JE; Daetwyler HD
    J Dairy Sci; 2021 Jan; 104(1):575-587. PubMed ID: 33162069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome differences in the rumen of beef steers with variation in feed intake and gain.
    Kern RJ; Lindholm-Perry AK; Freetly HC; Snelling WM; Kern JW; Keele JW; Miles JR; Foote AP; Oliver WT; Kuehn LA; Ludden PA
    Gene; 2016 Jul; 586(1):12-26. PubMed ID: 27033587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Associations of rumen parameters with feed efficiency and sampling routine in beef cattle.
    Lam S; Munro JC; Zhou M; Guan LL; Schenkel FS; Steele MA; Miller SP; Montanholi YR
    Animal; 2018 Jul; 12(7):1442-1450. PubMed ID: 29122053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle.
    Salleh MS; Mazzoni G; Höglund JK; Olijhoek DW; Lund P; Løvendahl P; Kadarmideen HN
    BMC Genomics; 2017 Mar; 18(1):258. PubMed ID: 28340555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of rumen-bypass protein supplement on growth performance, hepatic mitochondrial protein complexes, and hepatic immune gene expression of beef steers with divergent residual feed intake.
    Idowu M; Taiwo G; Sidney T; Treon E; Leal Y; Ologunagba D; Eichie F; Pech-Cervantes A; Ogunade IM
    PLoS One; 2024; 19(7):e0293718. PubMed ID: 38959213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrative transcriptome analysis indicates regulatory mRNA-miRNA networks for residual feed intake in Nelore cattle.
    De Oliveira PSN; Coutinho LL; Tizioto PC; Cesar ASM; de Oliveira GB; Diniz WJDS; De Lima AO; Reecy JM; Mourão GB; Zerlotini A; Regitano LCA
    Sci Rep; 2018 Nov; 8(1):17072. PubMed ID: 30459456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of breed and diet type on the global transcriptome of hepatic tissue in beef cattle divergent for feed efficiency.
    Higgins MG; Kenny DA; Fitzsimons C; Blackshields G; Coyle S; McKenna C; McGee M; Morris DW; Waters SM
    BMC Genomics; 2019 Jun; 20(1):525. PubMed ID: 31242854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of feed efficiency selection on the ruminal, cecal, and fecal microbiomes of Angus steers from a commercial feedlot.
    Welch CB; Lourenco JM; Davis DB; Krause TR; Carmichael MN; Rothrock MJ; Pringle TD; Callaway TR
    J Anim Sci; 2020 Jul; 98(7):. PubMed ID: 32687166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liver transcriptome profiling of beef steers with divergent growth rate, feed intake, or metabolic body weight phenotypes1.
    Mukiibi R; Vinsky M; Keogh K; Fitzsimmons C; Stothard P; Waters SM; Li C
    J Anim Sci; 2019 Nov; 97(11):4386-4404. PubMed ID: 31583405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between the rumen microbiome and liver transcriptome in beef cattle divergent for feed efficiency.
    Keogh K; Kenny DA; Alexandre PA; Waters SM; McGovern E; McGee M; Reverter A
    Anim Microbiome; 2024 Sep; 6(1):52. PubMed ID: 39304935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metatranscriptomic Profiling Reveals Linkages between the Active Rumen Microbiome and Feed Efficiency in Beef Cattle.
    Li F; Guan LL
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28235871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.