These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 27507154)
1. Protective Effects of Arginine on Saccharomyces cerevisiae Against Ethanol Stress. Cheng Y; Du Z; Zhu H; Guo X; He X Sci Rep; 2016 Aug; 6():31311. PubMed ID: 27507154 [TBL] [Abstract][Full Text] [Related]
2. Reduced production of ethyl carbamate for wine fermentation by deleting CAR1 in Saccharomyces cerevisiae. Guo XW; Li YZ; Guo J; Wang Q; Huang SY; Chen YF; Du LP; Xiao DG J Ind Microbiol Biotechnol; 2016 May; 43(5):671-9. PubMed ID: 26831650 [TBL] [Abstract][Full Text] [Related]
3. Decreased ethyl carbamate generation during Chinese rice wine fermentation by disruption of CAR1 in an industrial yeast strain. Wu D; Li X; Shen C; Lu J; Chen J; Xie G Int J Food Microbiol; 2014 Jun; 180():19-23. PubMed ID: 24769164 [TBL] [Abstract][Full Text] [Related]
4. CAR1 deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae. Chin YW; Kang WK; Jang HW; Turner TL; Kim HJ J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1517-1525. PubMed ID: 27573438 [TBL] [Abstract][Full Text] [Related]
5. Cloning and sequencing of Schizosaccharomyces pombe car1 gene encoding arginase. Expression of the arginine anabolic and catabolic genes in response to arginine and related metabolites. Van Huffel C; Dubois E; Messenguy F Yeast; 1994 Jul; 10(7):923-33. PubMed ID: 7985419 [TBL] [Abstract][Full Text] [Related]
6. Proline accumulation protects Saccharomyces cerevisiae cells in stationary phase from ethanol stress by reducing reactive oxygen species levels. Takagi H; Taguchi J; Kaino T Yeast; 2016 Aug; 33(8):355-63. PubMed ID: 26833688 [TBL] [Abstract][Full Text] [Related]
7. Reprogramming of the Ethanol Stress Response in Saccharomyces cerevisiae by the Transcription Factor Znf1 and Its Effect on the Biosynthesis of Glycerol and Ethanol. Samakkarn W; Ratanakhanokchai K; Soontorngun N Appl Environ Microbiol; 2021 Jul; 87(16):e0058821. PubMed ID: 34105981 [TBL] [Abstract][Full Text] [Related]
8. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses. Charoenbhakdi S; Dokpikul T; Burphan T; Techo T; Auesukaree C Appl Environ Microbiol; 2016 May; 82(10):3121-3130. PubMed ID: 26994074 [TBL] [Abstract][Full Text] [Related]
9. Increased ethanol production from glycerol by Saccharomyces cerevisiae strains with enhanced stress tolerance from the overexpression of SAGA complex components. Yu KO; Jung J; Ramzi AB; Choe SH; Kim SW; Park C; Han SO Enzyme Microb Technol; 2012 Sep; 51(4):237-43. PubMed ID: 22883559 [TBL] [Abstract][Full Text] [Related]
10. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. Sasano Y; Watanabe D; Ukibe K; Inai T; Ohtsu I; Shimoi H; Takagi H J Biosci Bioeng; 2012 Apr; 113(4):451-5. PubMed ID: 22178024 [TBL] [Abstract][Full Text] [Related]
11. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. Hirasawa T; Yoshikawa K; Nakakura Y; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S J Biotechnol; 2007 Aug; 131(1):34-44. PubMed ID: 17604866 [TBL] [Abstract][Full Text] [Related]
13. An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role. Nishimura A; Kotani T; Sasano Y; Takagi H FEMS Yeast Res; 2010 Sep; 10(6):687-98. PubMed ID: 20550582 [TBL] [Abstract][Full Text] [Related]
14. A transcriptome analysis of the ameliorate effect of Cyclocarya paliurus triterpenoids on ethanol stress in Saccharomyces cerevisiae. Chen Y; Zhang X; Zhang M; Zhu J; Wu Z; Zheng X World J Microbiol Biotechnol; 2018 Nov; 34(12):182. PubMed ID: 30478689 [TBL] [Abstract][Full Text] [Related]
15. RNA-seq transcriptomic analysis of green tea polyphenols regulation of differently expressed genes in Saccharomyces cerevisiae under ethanol stress. Cheng L; Zhang X; Zheng X; Wu Z; Weng P World J Microbiol Biotechnol; 2019 Mar; 35(4):59. PubMed ID: 30915597 [TBL] [Abstract][Full Text] [Related]
16. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. Auesukaree C J Biosci Bioeng; 2017 Aug; 124(2):133-142. PubMed ID: 28427825 [TBL] [Abstract][Full Text] [Related]
17. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883 [TBL] [Abstract][Full Text] [Related]
18. Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system. Pérez-Gallardo RV; Briones LS; Díaz-Pérez AL; Gutiérrez S; Rodríguez-Zavala JS; Campos-García J FEMS Yeast Res; 2013 Dec; 13(8):804-19. PubMed ID: 24028658 [TBL] [Abstract][Full Text] [Related]
19. Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Kaino T; Takagi H Appl Microbiol Biotechnol; 2008 May; 79(2):273-83. PubMed ID: 18351334 [TBL] [Abstract][Full Text] [Related]
20. [Ethanol tolerance in yeast: molecular mechanisms and genetic engineering]. Zhang Q; Zhao X; Jiang R; Li Q; Bai F Sheng Wu Gong Cheng Xue Bao; 2009 Apr; 25(4):481-7. PubMed ID: 19637619 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]