These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
378 related articles for article (PubMed ID: 27507280)
1. Biomechanical Behavior of Bioprosthetic Heart Valve Heterograft Tissues: Characterization, Simulation, and Performance. Soares JS; Feaver KR; Zhang W; Kamensky D; Aggarwal A; Sacks MS Cardiovasc Eng Technol; 2016 Dec; 7(4):309-351. PubMed ID: 27507280 [TBL] [Abstract][Full Text] [Related]
2. Bioprosthetic heart valve heterograft biomaterials: structure, mechanical behavior and computational simulation. Sacks MS; Mirnajafi A; Sun W; Schmidt P Expert Rev Med Devices; 2006 Nov; 3(6):817-34. PubMed ID: 17280546 [TBL] [Abstract][Full Text] [Related]
3. Computational methods for the aortic heart valve and its replacements. Zakerzadeh R; Hsu MC; Sacks MS Expert Rev Med Devices; 2017 Nov; 14(11):849-866. PubMed ID: 28980492 [TBL] [Abstract][Full Text] [Related]
4. Simulated bioprosthetic heart valve deformation under quasi-static loading. Sun W; Abad A; Sacks MS J Biomech Eng; 2005 Nov; 127(6):905-14. PubMed ID: 16438226 [TBL] [Abstract][Full Text] [Related]
5. Simulating the time evolving geometry, mechanical properties, and fibrous structure of bioprosthetic heart valve leaflets under cyclic loading. Zhang W; Motiwale S; Hsu MC; Sacks MS J Mech Behav Biomed Mater; 2021 Nov; 123():104745. PubMed ID: 34482092 [TBL] [Abstract][Full Text] [Related]
6. Radical polymerization-crosslinking method for improving extracellular matrix stability in bioprosthetic heart valves with reduced potential for calcification and inflammatory response. Guo G; Jin L; Jin W; Chen L; Lei Y; Wang Y Acta Biomater; 2018 Dec; 82():44-55. PubMed ID: 30326277 [TBL] [Abstract][Full Text] [Related]
7. A versatile modification strategy for functional non-glutaraldehyde cross-linked bioprosthetic heart valves with enhanced anticoagulant, anticalcification and endothelialization properties. Yu T; Pu H; Chen X; Kong Q; Chen C; Li G; Jiang Q; Wang Y Acta Biomater; 2023 Apr; 160():45-58. PubMed ID: 36764592 [TBL] [Abstract][Full Text] [Related]
8. Noncalcific Mechanisms of Bioprosthetic Structural Valve Degeneration. Marro M; Kossar AP; Xue Y; Frasca A; Levy RJ; Ferrari G J Am Heart Assoc; 2021 Feb; 10(3):e018921. PubMed ID: 33494616 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of transcatheter heart valve biomaterials: Computational modeling using bovine and porcine pericardium. Sulejmani F; Caballero A; Martin C; Pham T; Sun W J Mech Behav Biomed Mater; 2019 Sep; 97():159-170. PubMed ID: 31125889 [TBL] [Abstract][Full Text] [Related]
10. Bioprosthetic aortic valve diameter and thickness are directly related to leaflet fluttering: Results from a combined experimental and computational modeling study. Lee JH; Scotten LN; Hunt R; Caranasos TG; Vavalle JP; Griffith BE JTCVS Open; 2021 Jun; 6():60-81. PubMed ID: 35211686 [TBL] [Abstract][Full Text] [Related]
11. Simulation of long-term fatigue damage in bioprosthetic heart valves: effects of leaflet and stent elastic properties. Martin C; Sun W Biomech Model Mechanobiol; 2014 Aug; 13(4):759-70. PubMed ID: 24092257 [TBL] [Abstract][Full Text] [Related]
12. Fluid-Structure Interaction Models of Bioprosthetic Heart Valve Dynamics in an Experimental Pulse Duplicator. Lee JH; Rygg AD; Kolahdouz EM; Rossi S; Retta SM; Duraiswamy N; Scotten LN; Craven BA; Griffith BE Ann Biomed Eng; 2020 May; 48(5):1475-1490. PubMed ID: 32034607 [TBL] [Abstract][Full Text] [Related]
13. Age-related enhanced degeneration of bioprosthetic valves due to leaflet calcification, tissue crosslinking, and structural changes. Xue Y; Kossar AP; Abramov A; Frasca A; Sun M; Zyablitskaya M; Paik D; Kalfa D; Della Barbera M; Thiene G; Kozaki S; Kawashima T; Gorman JH; Gorman RC; Gillespie MJ; Carreon CK; Sanders SP; Levy RJ; Ferrari G Cardiovasc Res; 2023 Mar; 119(1):302-315. PubMed ID: 35020813 [TBL] [Abstract][Full Text] [Related]
14. Fluid mechanics of heart valves. Yoganathan AP; He Z; Casey Jones S Annu Rev Biomed Eng; 2004; 6():331-62. PubMed ID: 15255773 [TBL] [Abstract][Full Text] [Related]
15. A PEGylation method of fabricating bioprosthetic heart valves based on glutaraldehyde and 2-amino-4-pentenoic acid co-crosslinking with improved antithrombogenicity and cytocompatibility. Ding K; Zheng C; Huang X; Zhang S; Li M; Lei Y; Wang Y Acta Biomater; 2022 May; 144():279-291. PubMed ID: 35365404 [TBL] [Abstract][Full Text] [Related]
16. Biomimetic proteoglycans as a tool to engineer the structure and mechanics of porcine bioprosthetic heart valves. Petrovic M; Kahle ER; Han L; Marcolongo MS J Biomed Mater Res B Appl Biomater; 2024 Jan; 112(1):e35336. PubMed ID: 37818847 [TBL] [Abstract][Full Text] [Related]
17. Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH. Zhang R; Wang Y; Chen L; Wang R; Li C; Li X; Fang B; Ren X; Ruan M; Liu J; Xiong Q; Zhang L; Jin Y; Zhang M; Liu X; Li L; Chen Q; Pan D; Li R; Cooper DKC; Yang H; Dai Y Acta Biomater; 2018 May; 72():196-205. PubMed ID: 29631050 [TBL] [Abstract][Full Text] [Related]
18. Stability and function of glycosaminoglycans in porcine bioprosthetic heart valves. Lovekamp JJ; Simionescu DT; Mercuri JJ; Zubiate B; Sacks MS; Vyavahare NR Biomaterials; 2006 Mar; 27(8):1507-18. PubMed ID: 16144707 [TBL] [Abstract][Full Text] [Related]
19. Modeling the response of exogenously crosslinked tissue to cyclic loading: The effects of permanent set. Zhang W; Sacks MS J Mech Behav Biomed Mater; 2017 Nov; 75():336-350. PubMed ID: 28780254 [TBL] [Abstract][Full Text] [Related]