BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27507288)

  • 1. A multi-locus genetic association test for a dichotomous trait and its secondary phenotype.
    Zhang H; Wu CO; Yang Y; Berndt SI; Chanock SJ; Yu K
    Stat Methods Med Res; 2018 May; 27(5):1464-1475. PubMed ID: 27507288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of multi-trait associations using pathway-based analysis of GWAS summary statistics.
    Pei G; Sun H; Dai Y; Liu X; Zhao Z; Jia P
    BMC Genomics; 2019 Feb; 20(Suppl 1):79. PubMed ID: 30712509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel association test for multiple secondary phenotypes from a case-control GWAS.
    Ray D; Basu S
    Genet Epidemiol; 2017 Jul; 41(5):413-426. PubMed ID: 28393390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome Wide Single Locus Single Trait, Multi-Locus and Multi-Trait Association Mapping for Some Important Agronomic Traits in Common Wheat (T. aestivum L.).
    Jaiswal V; Gahlaut V; Meher PK; Mir RR; Jaiswal JP; Rao AR; Balyan HS; Gupta PK
    PLoS One; 2016; 11(7):e0159343. PubMed ID: 27441835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validity of using ad hoc methods to analyze secondary traits in case-control association studies.
    Yung G; Lin X
    Genet Epidemiol; 2016 Dec; 40(8):732-743. PubMed ID: 27670932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies.
    Tamba CL; Ni YL; Zhang YM
    PLoS Comput Biol; 2017 Jan; 13(1):e1005357. PubMed ID: 28141824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Effective Method to Identify Heritable Components from Multivariate Phenotypes.
    Sun J; Kranzler HR; Bi J
    PLoS One; 2015; 10(12):e0144418. PubMed ID: 26658140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rank-based robust tests for quantitative-trait genetic association studies.
    Li Q; Li Z; Zheng G; Gao G; Yu K
    Genet Epidemiol; 2013 May; 37(4):358-65. PubMed ID: 23526350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disease and Polygenic Architecture: Avoid Trio Design and Appropriately Account for Unscreened Control Subjects for Common Disease.
    Peyrot WJ; Boomsma DI; Penninx BW; Wray NR
    Am J Hum Genet; 2016 Feb; 98(2):382-91. PubMed ID: 26849113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pleiotropy and principal components of heritability combine to increase power for association analysis.
    Klei L; Luca D; Devlin B; Roeder K
    Genet Epidemiol; 2008 Jan; 32(1):9-19. PubMed ID: 17922480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonparametric evaluation of quantitative traits in population-based association studies when the genetic model is unknown.
    Konietschke F; Libiger O; Hothorn LA
    PLoS One; 2012; 7(2):e31242. PubMed ID: 22363593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Set-based tests for genetic association in longitudinal studies.
    He Z; Zhang M; Lee S; Smith JA; Guo X; Palmas W; Kardia SL; Diez Roux AV; Mukherjee B
    Biometrics; 2015 Sep; 71(3):606-15. PubMed ID: 25854837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative trait loci influencing forking defects in an outbred pedigree of loblolly pine.
    Xiong JS; McKeand SE; Isik F; Wegrzyn J; Neale DB; Zeng ZB; da Costa E Silva L; Whetten RW
    BMC Genet; 2016 Oct; 17(1):138. PubMed ID: 27756221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the simultaneous association analysis of large genomic regions: a massive multi-locus association test.
    Qiao D; Cho MH; Fier H; Bakke PS; Gulsvik A; Silverman EK; Lange C
    Bioinformatics; 2014 Jan; 30(2):157-64. PubMed ID: 24262215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive analysis of genome-wide association studies to identify prostate cancer susceptibility loci for the Romanian population.
    Rădăvoi GD; Pricop C; Jinga V; Mateş D; Rădoi VE; Jinga M; Ursu RI; Bratu OG; Mischianu DL; Iordache P
    Rom J Morphol Embryol; 2016; 57(2):467-75. PubMed ID: 27516020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic control of canine leishmaniasis: genome-wide association study and genomic selection analysis.
    Quilez J; Martínez V; Woolliams JA; Sanchez A; Pong-Wong R; Kennedy LJ; Quinnell RJ; Ollier WE; Roura X; Ferrer L; Altet L; Francino O
    PLoS One; 2012; 7(4):e35349. PubMed ID: 22558142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heritability and GWAS Studies for Monocyte-Lymphocyte Ratio.
    Lin BD; Willemsen G; Fedko IO; Jansen R; Penninx B; de Geus E; Kluft C; Hottenga J; Boomsma DI
    Twin Res Hum Genet; 2017 Apr; 20(2):97-107. PubMed ID: 28193307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide association study for endocrine fertility traits using single nucleotide polymorphism arrays and sequence variants in dairy cattle.
    Tenghe AMM; Bouwman AC; Berglund B; Strandberg E; de Koning DJ; Veerkamp RF
    J Dairy Sci; 2016 Jul; 99(7):5470-5485. PubMed ID: 27157577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A predictive assessment of genetic correlations between traits in chickens using markers.
    Momen M; Mehrgardi AA; Sheikhy A; Esmailizadeh A; Fozi MA; Kranis A; Valente BD; Rosa GJ; Gianola D
    Genet Sel Evol; 2017 Feb; 49(1):16. PubMed ID: 28148241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multitrait genome association analysis identifies new susceptibility genes for human anthropometric variation in the GCAT cohort.
    Galván-Femenía I; Obón-Santacana M; Piñeyro D; Guindo-Martinez M; Duran X; Carreras A; Pluvinet R; Velasco J; Ramos L; Aussó S; Mercader JM; Puig L; Perucho M; Torrents D; Moreno V; Sumoy L; de Cid R
    J Med Genet; 2018 Nov; 55(11):765-778. PubMed ID: 30166351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.