These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 27507289)

  • 1. A new parsimonious model for ordinal longitudinal data with application to subjective evaluations of a gastrointestinal disease.
    Ursino M; Gasparini M
    Stat Methods Med Res; 2018 May; 27(5):1376-1393. PubMed ID: 27507289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An approximate marginal logistic distribution for the analysis of longitudinal ordinal data.
    Nooraee N; Abegaz F; Ormel J; Wit E; van den Heuvel ER
    Biometrics; 2016 Mar; 72(1):253-61. PubMed ID: 26458164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A random-effects ordinal regression model for multilevel analysis.
    Hedeker D; Gibbons RD
    Biometrics; 1994 Dec; 50(4):933-44. PubMed ID: 7787006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Latent variable models for multivariate longitudinal ordinal responses.
    Cagnone S; Moustaki I; Vasdekis V
    Br J Math Stat Psychol; 2009 May; 62(Pt 2):401-15. PubMed ID: 18625083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Longitudinal Joint Modelling of Ordinal and Overdispersed Count Outcomes: A Bridge Distribution for the Ordinal Random Intercept.
    Amini P; Moghimbeigi A; Zayeri F; Tapak L; Maroufizadeh S; Verbeke G
    Comput Math Methods Med; 2021; 2021():5521881. PubMed ID: 33763151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of mixed correlated overdispersed binomial and ordinal longitudinal responses: LogLindley-Binomial and ordinal random effects model.
    Azimi SS; Bahrami Samani E; Ganjali M
    J Appl Stat; 2022; 49(7):1742-1768. PubMed ID: 35707561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Latent-variable models for longitudinal data with bivariate ordinal outcomes.
    Todem D; Kim K; Lesaffre E
    Stat Med; 2007 Feb; 26(5):1034-54. PubMed ID: 16832841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MIXOR: a computer program for mixed-effects ordinal regression analysis.
    Hedeker D; Gibbons RD
    Comput Methods Programs Biomed; 1996 Mar; 49(2):157-76. PubMed ID: 8735023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mixed-effects regression model for longitudinal multivariate ordinal data.
    Liu LC; Hedeker D
    Biometrics; 2006 Mar; 62(1):261-8. PubMed ID: 16542254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mixed effects model for multivariate ordinal response data including correlated discrete failure times with ordinal responses.
    Ten Have TR
    Biometrics; 1996 Jun; 52(2):473-91. PubMed ID: 8672699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint analysis of bivariate longitudinal ordinal outcomes and competing risks survival times with nonparametric distributions for random effects.
    Li N; Elashoff RM; Li G; Tseng CH
    Stat Med; 2012 Jul; 31(16):1707-21. PubMed ID: 22344869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Longitudinal beta-binomial modeling using GEE for overdispersed binomial data.
    Wu H; Zhang Y; Long JD
    Stat Med; 2017 Mar; 36(6):1029-1040. PubMed ID: 27917499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-parametric latent process model for longitudinal ordinal data: Application to cognitive decline.
    Jacqmin-Gadda H; Proust-Lima C; Amiéva H
    Stat Med; 2010 Nov; 29(26):2723-31. PubMed ID: 20809483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Order-restricted tests for stratified comparisons of binomial proportions.
    Agresti A; Coull BA
    Biometrics; 1996 Sep; 52(3):1103-11. PubMed ID: 8805770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible marginalized models for bivariate longitudinal ordinal data.
    Lee K; Daniels MJ; Joo Y
    Biostatistics; 2013 Jul; 14(3):462-76. PubMed ID: 23365416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zero inflated statistical count models for analysing the costs imposed by GERD and dyspepsia.
    Akbarzadeh Baghban A; Pourhoseingholi A; Zayeri F; Ashtari S; Zali MR
    Arab J Gastroenterol; 2013 Dec; 14(4):165-8. PubMed ID: 24433646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dropouts in a longitudinal study: an application of a repeated ordinal model.
    Lesaffre E; Molenberghs G; Dewulf L
    Stat Med; 1996 Jun; 15(11):1123-41. PubMed ID: 8804143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of multivariate mixed longitudinal data: a flexible latent process approach.
    Proust-Lima C; Amieva H; Jacqmin-Gadda H
    Br J Math Stat Psychol; 2013 Nov; 66(3):470-87. PubMed ID: 23082854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of dyspepsia and functional gastrointestinal disorders: a cost-benefit analysis of different approaches.
    Sonnenberg A; Townsend WF; Müller AD
    Eur J Gastroenterol Hepatol; 1995 Jul; 7(7):655-9. PubMed ID: 8590161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel modeling framework for ordinal data defined by collapsed counts.
    McGinley JS; Curran PJ; Hedeker D
    Stat Med; 2015 Jul; 34(15):2312-24. PubMed ID: 25857717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.