These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 27507326)
1. Volumetric image classification using homogeneous decomposition and dictionary learning: A study using retinal optical coherence tomography for detecting age-related macular degeneration. Albarrak A; Coenen F; Zheng Y Comput Med Imaging Graph; 2017 Jan; 55():113-123. PubMed ID: 27507326 [TBL] [Abstract][Full Text] [Related]
2. Fully automated macular pathology detection in retina optical coherence tomography images using sparse coding and dictionary learning. Sun Y; Li S; Sun Z J Biomed Opt; 2017 Jan; 22(1):16012. PubMed ID: 28114453 [TBL] [Abstract][Full Text] [Related]
3. A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field. Chakravarty A; Sivaswamy J Comput Methods Programs Biomed; 2018 Oct; 165():235-250. PubMed ID: 30337078 [TBL] [Abstract][Full Text] [Related]
4. Automatic classification of retinal three-dimensional optical coherence tomography images using principal component analysis network with composite kernels. Fang L; Wang C; Li S; Yan J; Chen X; Rabbani H J Biomed Opt; 2017 Nov; 22(11):1-10. PubMed ID: 29188661 [TBL] [Abstract][Full Text] [Related]
5. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography. Perdomo O; Rios H; Rodríguez FJ; Otálora S; Meriaudeau F; Müller H; González FA Comput Methods Programs Biomed; 2019 Sep; 178():181-189. PubMed ID: 31416547 [TBL] [Abstract][Full Text] [Related]
6. Self-supervised iterative refinement learning for macular OCT volumetric data classification. Qiu J; Sun Y Comput Biol Med; 2019 Aug; 111():103327. PubMed ID: 31302456 [TBL] [Abstract][Full Text] [Related]
7. Fully automated detection of retinal disorders by image-based deep learning. Li F; Chen H; Liu Z; Zhang X; Wu Z Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422 [TBL] [Abstract][Full Text] [Related]
8. Automatic detection of retinal regions using fully convolutional networks for diagnosis of abnormal maculae in optical coherence tomography images. Sun Z; Sun Y J Biomed Opt; 2019 May; 24(5):1-9. PubMed ID: 31111697 [TBL] [Abstract][Full Text] [Related]
9. Statistical Modeling of Retinal Optical Coherence Tomography. Amini Z; Rabbani H IEEE Trans Med Imaging; 2016 Jun; 35(6):1544-54. PubMed ID: 26800532 [TBL] [Abstract][Full Text] [Related]
10. Automated diagnosis of macular edema and central serous retinopathy through robust reconstruction of 3D retinal surfaces. Syed AM; Hassan T; Akram MU; Naz S; Khalid S Comput Methods Programs Biomed; 2016 Dec; 137():1-10. PubMed ID: 28110716 [TBL] [Abstract][Full Text] [Related]
11. Deep ensemble learning for automated non-advanced AMD classification using optimized retinal layer segmentation and SD-OCT scans. Moradi M; Chen Y; Du X; Seddon JM Comput Biol Med; 2023 Mar; 154():106512. PubMed ID: 36701964 [TBL] [Abstract][Full Text] [Related]
12. Role of the Choroid in Automated Age-related Macular Degeneration Detection from Optical Coherence Tomography Images. Srivastava R; Ong EP; Lee BH Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1867-1870. PubMed ID: 33018364 [TBL] [Abstract][Full Text] [Related]
13. Features of age-related macular degeneration assessed with three-dimensional Fourier-domain optical coherence tomography. Menke MN; Dabov S; Sturm V Br J Ophthalmol; 2008 Nov; 92(11):1492-7. PubMed ID: 18703554 [TBL] [Abstract][Full Text] [Related]
14. End-to-End Deep Learning Model for Predicting Treatment Requirements in Neovascular AMD From Longitudinal Retinal OCT Imaging. Romo-Bucheli D; Erfurth US; Bogunovic H IEEE J Biomed Health Inform; 2020 Dec; 24(12):3456-3465. PubMed ID: 32750929 [TBL] [Abstract][Full Text] [Related]
15. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment. Yoo TK; Choi JY; Seo JG; Ramasubramanian B; Selvaperumal S; Kim DW Med Biol Eng Comput; 2019 Mar; 57(3):677-687. PubMed ID: 30349958 [TBL] [Abstract][Full Text] [Related]
16. Multi-scale convolutional neural network for automated AMD classification using retinal OCT images. Sotoudeh-Paima S; Jodeiri A; Hajizadeh F; Soltanian-Zadeh H Comput Biol Med; 2022 May; 144():105368. PubMed ID: 35259614 [TBL] [Abstract][Full Text] [Related]
17. Deep Ensemble Learning Based Objective Grading of Macular Edema by Extracting Clinically Significant Findings from Fused Retinal Imaging Modalities. Hassan B; Hassan T; Li B; Ahmed R; Hassan O Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284442 [TBL] [Abstract][Full Text] [Related]
18. Automated Segmentation and Quantification of Drusen in Fundus and Optical Coherence Tomography Images for Detection of ARMD. Khalid S; Akram MU; Hassan T; Jameel A; Khalil T J Digit Imaging; 2018 Aug; 31(4):464-476. PubMed ID: 29204763 [TBL] [Abstract][Full Text] [Related]
19. Automated choroid segmentation of three-dimensional SD-OCT images by incorporating EDI-OCT images. Chen Q; Niu S; Fang W; Shuai Y; Fan W; Yuan S; Liu Q Comput Methods Programs Biomed; 2018 May; 158():161-171. PubMed ID: 29544782 [TBL] [Abstract][Full Text] [Related]
20. Classification of healthy and diseased retina using SD-OCT imaging and Random Forest algorithm. Hussain MA; Bhuiyan A; D Luu C; Theodore Smith R; H Guymer R; Ishikawa H; S Schuman J; Ramamohanarao K PLoS One; 2018; 13(6):e0198281. PubMed ID: 29864167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]