BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 27507330)

  • 1. Direct PCR-Ribotyping of Clostridium difficile.
    Janezic S
    Methods Mol Biol; 2016; 1476():15-21. PubMed ID: 27507330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reprint of New opportunities for improved ribotyping of C. difficile clinical isolates by exploring their genomes.
    Gürtler V; Grando D
    J Microbiol Methods; 2013 Dec; 95(3):425-40. PubMed ID: 24050948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing.
    Bidet P; Barbut F; Lalande V; Burghoffer B; Petit JC
    FEMS Microbiol Lett; 1999 Jun; 175(2):261-6. PubMed ID: 10386377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of PCR-ribotyping, arbitrarily primed PCR, and pulsed-field gel electrophoresis for typing Clostridium difficile.
    Bidet P; Lalande V; Salauze B; Burghoffer B; Avesani V; Delmée M; Rossier A; Barbut F; Petit JC
    J Clin Microbiol; 2000 Jul; 38(7):2484-7. PubMed ID: 10878030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes.
    Stubbs SL; Brazier JS; O'Neill GL; Duerden BI
    J Clin Microbiol; 1999 Feb; 37(2):461-3. PubMed ID: 9889244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New opportunities for improved ribotyping of C. difficile clinical isolates by exploring their genomes.
    Gürtler V; Grando D
    J Microbiol Methods; 2013 Jun; 93(3):257-72. PubMed ID: 23545446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PCR ribotyping of clinically important Clostridium difficile strains from Hungary.
    Urbán E; Brazier JS; Sóki J; Nagy E; Duerden BI
    J Med Microbiol; 2001 Dec; 50(12):1082-1086. PubMed ID: 11761193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Typing of Clostridium difficile strains by PCR-amplification of variable length 16S-23S rDNA spacer regions.
    Gürtler V
    J Gen Microbiol; 1993 Dec; 139(12):3089-97. PubMed ID: 7510324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular typing and long-term comparison of clostridium difficile strains by pulsed-field gel electrophoresis and PCR-ribotyping.
    Spigaglia P; Cardines R; Rossi S; Menozzi MG; Mastrantonio P
    J Med Microbiol; 2001 May; 50(5):407-414. PubMed ID: 11339247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of molecular typing methods applied to Clostridium difficile.
    Kuijper EJ; van den Berg RJ; Brazier JS
    Methods Mol Biol; 2009; 551():159-71. PubMed ID: 19521874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA microarray-based PCR ribotyping of Clostridium difficile.
    Schneeberg A; Ehricht R; Slickers P; Baier V; Neubauer H; Zimmermann S; Rabold D; Lübke-Becker A; Seyboldt C
    J Clin Microbiol; 2015 Feb; 53(2):433-42. PubMed ID: 25411174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restriction Endonuclease Analysis Typing of Clostridium difficile Isolates.
    Sambol SP; Johnson S; Gerding DN
    Methods Mol Biol; 2016; 1476():1-13. PubMed ID: 27507329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High resolution melt analysis to track infections due to ribotype 027 Clostridium difficile.
    Grando D; Said MM; Mayall BC; Gurtler V
    J Microbiol Methods; 2012 May; 89(2):87-94. PubMed ID: 22406296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epidemiological survey of Clostridium difficile ribotypes in the North East of England during an 18-month period.
    Vanek J; Hill K; Collins J; Berrington A; Perry J; Inns T; Gorton R; Magee J; Sails A; Mullan A; Gould FK
    J Hosp Infect; 2012 Jul; 81(3):209-12. PubMed ID: 22633277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subtyping of Clostridium difficile polymerase chain reaction (PCR) ribotype 001 by repetitive extragenic palindromic PCR genomic fingerprinting.
    Rahmati A; Gal M; Northey G; Brazier JS
    J Hosp Infect; 2005 May; 60(1):56-60. PubMed ID: 15823658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical use comparison of a semiautomated PCR with fluorescent ribotyping for typing of Clostridium difficile.
    Thabit AK; Alam MJ; Burnham CD; Nicolau DP
    Arch Microbiol; 2017 Mar; 199(2):317-323. PubMed ID: 27730251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of Clostridium difficile PCR ribotypes and high proportion of 027 and 176 in some hospitals in four South Eastern European countries.
    Rupnik M; Tambic Andrasevic A; Trajkovska Dokic E; Matas I; Jovanovic M; Pasic S; Kocuvan A; Janezic S
    Anaerobe; 2016 Dec; 42():142-144. PubMed ID: 27751937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotyping protocol for Clostridium difficile.
    Fawley WN; Knetsch CW; MacCannell DR; Harmanus C; Du T; Mulvey MR; Paulick A; Anderson L; Kuijper EJ; Wilcox MH
    PLoS One; 2015; 10(2):e0118150. PubMed ID: 25679978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of different molecular typing methods for the study of heterogeneity within Clostridium difficile toxinotypes V and III.
    Janezic S; Indra A; Allerberger F; Rupnik M
    J Med Microbiol; 2011 Aug; 60(Pt 8):1101-1107. PubMed ID: 21436374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Typing of Clostridium difficile.
    Brazier JS
    Clin Microbiol Infect; 2001 Aug; 7(8):428-31. PubMed ID: 11591206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.