These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 27507505)

  • 1. High-throughput assay comparison and standardization for metal chelating capacity screening: A proposal and application.
    Santos JS; Alvarenga Brizola VR; Granato D
    Food Chem; 2017 Jan; 214():515-522. PubMed ID: 27507505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput methods to assess lipophilic and hydrophilic antioxidant capacity of food extracts in vitro.
    Jimenez-Alvarez D; Giuffrida F; Vanrobaeys F; Golay PA; Cotting C; Lardeau A; Keely BJ
    J Agric Food Chem; 2008 May; 56(10):3470-7. PubMed ID: 18433133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method.
    Apak R; Güçlü K; Ozyürek M; Karademir SE
    J Agric Food Chem; 2004 Dec; 52(26):7970-81. PubMed ID: 15612784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the copper(II) reduction assay using bathocuproinedisulfonic acid disodium salt for the total antioxidant capacity assessment: the CUPRAC-BCS assay.
    Campos C; Guzmán R; López-Fernández E; Casado A
    Anal Biochem; 2009 Sep; 392(1):37-44. PubMed ID: 19464250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant properties of various solvent extracts from purple basil.
    Yeşiloğlu Y; Sit L
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Sep; 95():100-6. PubMed ID: 22613128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Total phenolic, total flavonoid content, and antioxidant capacity of the leaves of Meyna spinosa Roxb., an Indian medicinal plant.
    Sen S; De B; Devanna N; Chakraborty R
    Chin J Nat Med; 2013 Mar; 11(2):149-57. PubMed ID: 23787182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antioxidant properties of low molecular weight phenols present in the mediterranean diet.
    Briante R; Febbraio F; Nucci R
    J Agric Food Chem; 2003 Nov; 51(24):6975-81. PubMed ID: 14611157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A silver nanoparticle-based method for determination of antioxidant capacity of rapeseed and its products.
    Szydłowska-Czerniak A; Tułodziecka A; Szłyk E
    Analyst; 2012 Aug; 137(16):3750-9. PubMed ID: 22741160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenolic content and ferric reducing-antioxidant power of cow's milk produced in different pasture-based production systems in southern Brazil.
    Kuhnen S; Moacyr JR; Mayer JK; Navarro BB; Trevisan R; Honorato LA; Maraschin M; Pinheiro Machado Filho LC
    J Sci Food Agric; 2014 Dec; 94(15):3110-7. PubMed ID: 24633643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photo-Curable Metal-Chelating Coatings Offer a Scalable Approach to Production of Antioxidant Active Packaging.
    Lin Z; Goddard J
    J Food Sci; 2018 Feb; 83(2):367-376. PubMed ID: 29377118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The characterisation of structural and antioxidant properties of isoflavone metal chelates.
    Dowling S; Regan F; Hughes H
    J Inorg Biochem; 2010 Oct; 104(10):1091-8. PubMed ID: 20656356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactivity of food phenols with iron and copper ions: binding, dioxygen activation and oxidation mechanisms.
    Nkhili E; Loonis M; Mihai S; El Hajji H; Dangles O
    Food Funct; 2014 Jun; 5(6):1186-202. PubMed ID: 24700074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal chelation of polyphenols.
    Hider RC; Liu ZD; Khodr HH
    Methods Enzymol; 2001; 335():190-203. PubMed ID: 11400368
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of climate change on phytochemical diversity, total phenolic content and in vitro antioxidant activity of Aloe vera (L.) Burm.f.
    Kumar S; Yadav A; Yadav M; Yadav JP
    BMC Res Notes; 2017 Jan; 10(1):60. PubMed ID: 28118858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant Activities and Phenolic Compounds of Several Tissues of Pawpaw (Asimina triloba [L.] Dunal) Grown in Korea.
    Nam JS; Jang HL; Rhee YH
    J Food Sci; 2017 Aug; 82(8):1827-1833. PubMed ID: 28715604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and anti-oxidant capacity determination of phenolics and their glycosides in elderflower by on-line HPLC-CUPRAC method.
    Çelik SE; Özyürek M; Güçlü K; Çapanoğlu E; Apak R
    Phytochem Anal; 2014; 25(2):147-54. PubMed ID: 24408862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenolics as potential antioxidant therapeutic agents: mechanism and actions.
    Soobrattee MA; Neergheen VS; Luximon-Ramma A; Aruoma OI; Bahorun T
    Mutat Res; 2005 Nov; 579(1-2):200-13. PubMed ID: 16126236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evaluation of reduction of Fe(III) in 3-hydroxy-4-nitroso-2,7-naphthalene disulphonic medium as an alternative ferric reducing activity power assay.
    de Souza MW; Moya HD
    Phytochem Anal; 2015; 26(2):119-26. PubMed ID: 25431184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant activity of the aqueous and methanolic extracts of coffee beans (Coffea arabica L.).
    Złotek U; Karaś M; Gawlik-Dziki U; Szymanowska U; Baraniak B; Jakubczyk A
    Acta Sci Pol Technol Aliment; 2016; 15(3):281-288. PubMed ID: 28071027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of chlorogenic acids to the iron-reducing activity of coffee beverages.
    Moreira DP; Monteiro MC; Ribeiro-Alves M; Donangelo CM; Trugo LC
    J Agric Food Chem; 2005 Mar; 53(5):1399-402. PubMed ID: 15740013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.