These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27507599)

  • 1. Remodeling of injectable, low-viscosity polymer/ceramic bone grafts in a sheep femoral defect model.
    Talley AD; McEnery MA; Kalpakci KN; Zienkiewicz KJ; Shimko DA; Guelcher SA
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2333-2343. PubMed ID: 27507599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of particle size and porosity on in vivo remodeling of settable allograft bone/polymer composites.
    Prieto EM; Talley AD; Gould NR; Zienkiewicz KJ; Drapeau SJ; Kalpakci KN; Guelcher SA
    J Biomed Mater Res B Appl Biomater; 2015 Nov; 103(8):1641-51. PubMed ID: 25581686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injectable and biodegradable composite bone filler composed of poly(propylene fumarate) and calcium phosphate ceramic for vertebral augmentation procedure: An in vivo porcine study.
    Wu CC; Hsu LH; Sumi S; Yang KC; Yang SH
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2232-2243. PubMed ID: 27448108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility and chemical reaction kinetics of injectable, settable polyurethane/allograft bone biocomposites.
    Page JM; Prieto EM; Dumas JE; Zienkiewicz KJ; Wenke JC; Brown-Baer P; Guelcher SA
    Acta Biomater; 2012 Dec; 8(12):4405-16. PubMed ID: 22871639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Balancing the rates of new bone formation and polymer degradation enhances healing of weight-bearing allograft/polyurethane composites in rabbit femoral defects.
    Dumas JE; Prieto EM; Zienkiewicz KJ; Guda T; Wenke JC; Bible J; Holt GE; Guelcher SA
    Tissue Eng Part A; 2014 Jan; 20(1-2):115-29. PubMed ID: 23941405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ceramic-polylactide composite material used in a model of healing of osseous defects in rabbits.
    Myciński P; Zarzecka J; Skórska-Stania A; Jelonek A; Okoń K; Wróbel M
    Pol J Pathol; 2017; 68(2):153-161. PubMed ID: 29025250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of an injectable allograft bone/polymer composite bone void filler with tunable mechanical properties.
    Dumas JE; Zienkiewicz K; Tanner SA; Prieto EM; Bhattacharyya S; Guelcher SA
    Tissue Eng Part A; 2010 Aug; 16(8):2505-18. PubMed ID: 20218874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D perfusion bioreactor-activated porous granules on implant fixation and early bone formation in sheep.
    Ding M; Henriksen SS; Martinetti R; Overgaard S
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2465-2476. PubMed ID: 27655015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimodal analysis of in vivo resorbable CaP bone substitutes by combining histology, SEM, and microcomputed tomography data.
    Sweedy A; Bohner M; Baroud G
    J Biomed Mater Res B Appl Biomater; 2018 May; 106(4):1567-1577. PubMed ID: 28766903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo investigations on composites made of resorbable ceramics and poly(lactide) used as bone graft substitutes.
    Ignatius AA; Betz O; Augat P; Claes LE
    J Biomed Mater Res; 2001; 58(6):701-9. PubMed ID: 11745524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molded polymer-coated composite bone void filler improves tobramycin controlled release kinetics.
    Brooks BD; Sinclair KD; Davidoff SN; Lawson S; Williams AG; Coats B; Grainger DW; Brooks AE
    J Biomed Mater Res B Appl Biomater; 2014 Jul; 102(5):1074-83. PubMed ID: 24376164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of an alginate carrier on bone formation in a hydroxyapatite scaffold.
    Coathup MJ; Edwards TC; Samizadeh S; Lo WJ; Blunn GW
    J Biomed Mater Res B Appl Biomater; 2016 Oct; 104(7):1328-35. PubMed ID: 26118665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The in vivo performance of an alkali-free bioactive glass for bone grafting, FastOs
    Cortez PP; Brito AF; Kapoor S; Correia AF; Atayde LM; Dias-Pereira P; Maurício AC; Afonso A; Goel A; Ferreira JM
    J Biomed Mater Res B Appl Biomater; 2017 Jan; 105(1):30-38. PubMed ID: 26392041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium polyphosphate particulates for bone void filler applications.
    Pilliar RM; Kandel RA; Grynpas MD; Theodoropoulos J; Hu Y; Allo B; Changoor A
    J Biomed Mater Res B Appl Biomater; 2017 May; 105(4):874-884. PubMed ID: 26833448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoconduction in keratin-hydroxyapatite composite bone-graft substitutes.
    Dias GJ; Mahoney P; Hung NA; Sharma LA; Kalita P; Smith RA; Kelly RJ; Ali A
    J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):2034-2044. PubMed ID: 27388333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation.
    Lin FH; Chen TM; Lin CP; Lee CJ
    Artif Organs; 1999 Feb; 23(2):186-94. PubMed ID: 10027889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of the bone regeneration and soft-tissue-formation capabilities of various injectable-grafting materials in a rabbit calvarial defect model.
    Chen CL; Tien HW; Chuang CH; Chen YC
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):529-544. PubMed ID: 29722122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration.
    Patlolla A; Collins G; Arinzeh TL
    Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composites made of rapidly resorbable ceramics and poly(lactide) show adequate mechanical properties for use as bone substitute materials.
    Ignatius AA; Wolf S; Augat P; Claes LE
    J Biomed Mater Res; 2001 Oct; 57(1):126-31. PubMed ID: 11416859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesenchymal stem cell seeded, biomimetic 3D printed scaffolds induce complete bridging of femoral critical sized defects.
    Szivek JA; Gonzales DA; Wojtanowski AM; Martinez MA; Smith JL
    J Biomed Mater Res B Appl Biomater; 2019 Feb; 107(2):242-252. PubMed ID: 29569331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.