These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
375 related articles for article (PubMed ID: 27507681)
1. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera). Li Z; Yu J; Peng Y; Huang B Physiol Plant; 2017 Jan; 159(1):42-58. PubMed ID: 27507681 [TBL] [Abstract][Full Text] [Related]
2. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera). Li Z; Yu J; Peng Y; Huang B Sci Rep; 2016 Jul; 6():30338. PubMed ID: 27455877 [TBL] [Abstract][Full Text] [Related]
3. iTRAQ-based proteomics reveals key role of γ-aminobutyric acid (GABA) in regulating drought tolerance in perennial creeping bentgrass (Agrostis stolonifera). Li Z; Huang T; Tang M; Cheng B; Peng Y; Zhang X Plant Physiol Biochem; 2019 Dec; 145():216-226. PubMed ID: 31707249 [TBL] [Abstract][Full Text] [Related]
4. Alteration of Transcripts of Stress-Protective Genes and Transcriptional Factors by γ-Aminobutyric Acid (GABA) Associated with Improved Heat and Drought Tolerance in Creeping Bentgrass ( Li Z; Peng Y; Huang B Int J Mol Sci; 2018 May; 19(6):. PubMed ID: 29857479 [TBL] [Abstract][Full Text] [Related]
5. Adaptability to abiotic stress regulated by γ-aminobutyric acid in relation to alterations of endogenous polyamines and organic metabolites in creeping bentgrass. Li Z; Cheng B; Peng Y; Zhang Y Plant Physiol Biochem; 2020 Dec; 157():185-194. PubMed ID: 33120110 [TBL] [Abstract][Full Text] [Related]
6. Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. Larkindale J; Huang B J Plant Physiol; 2004 Apr; 161(4):405-13. PubMed ID: 15128028 [TBL] [Abstract][Full Text] [Related]
7. Polyamines Metabolism Interacts with γ-Aminobutyric Acid, Proline and Nitrogen Metabolisms to Affect Drought Tolerance of Creeping Bentgrass. Tan M; Hassan MJ; Peng Y; Feng G; Huang L; Liu L; Liu W; Han L; Li Z Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35269921 [TBL] [Abstract][Full Text] [Related]
8. Elevated cytokinin content in ipt transgenic creeping bentgrass promotes drought tolerance through regulating metabolite accumulation. Merewitz EB; Du H; Yu W; Liu Y; Gianfagna T; Huang B J Exp Bot; 2012 Feb; 63(3):1315-28. PubMed ID: 22131157 [TBL] [Abstract][Full Text] [Related]
9. Global Metabolites Reprogramming Induced by Spermine Contributing to Salt Tolerance in Creeping Bentgrass. Li Z; Cheng B; Liu W; Feng G; Zhao J; Zhang L; Peng Y Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562863 [TBL] [Abstract][Full Text] [Related]
10. Nitric Oxide Signal, Nitrogen Metabolism, and Water Balance Affected by γ-Aminobutyric Acid (GABA) in Relation to Enhanced Tolerance to Water Stress in Creeping Bentgrass. Tang M; Li Z; Luo L; Cheng B; Zhang Y; Zeng W; Peng Y Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33050389 [TBL] [Abstract][Full Text] [Related]
11. Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass. Yang Z; Chang Z; Sun L; Yu J; Huang B PLoS One; 2014; 9(12):e116283. PubMed ID: 25551443 [TBL] [Abstract][Full Text] [Related]
12. Metabolite responses to exogenous application of nitrogen, cytokinin, and ethylene inhibitors in relation to heat-induced senescence in creeping bentgrass. Jespersen D; Yu J; Huang B PLoS One; 2015; 10(3):e0123744. PubMed ID: 25822363 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional regulation and stress-defensive key genes induced by γ-aminobutyric acid in association with tolerance to water stress in creeping bentgrass. Li Z; Tang M; Cheng B; Han L Plant Signal Behav; 2021 Mar; 16(3):1858247. PubMed ID: 33470151 [TBL] [Abstract][Full Text] [Related]
14. γ-Aminobutyric acid (GABA) priming alleviates acid-aluminum toxicity to roots of creeping bentgrass via enhancements in antioxidant defense and organic metabolites remodeling. Zhou M; Huang C; Lin J; Yuan Y; Lin L; Zhou J; Li Z Planta; 2024 Jun; 260(1):33. PubMed ID: 38896325 [TBL] [Abstract][Full Text] [Related]
15. γ-Aminobutyric Acid Enhances Heat Tolerance Associated with the Change of Proteomic Profiling in Creeping Bentgrass. Li Z; Zeng W; Cheng B; Huang T; Peng Y; Zhang X Molecules; 2020 Sep; 25(18):. PubMed ID: 32961841 [TBL] [Abstract][Full Text] [Related]
16. Chitosan regulates metabolic balance, polyamine accumulation, and Na Geng W; Li Z; Hassan MJ; Peng Y BMC Plant Biol; 2020 Nov; 20(1):506. PubMed ID: 33148164 [TBL] [Abstract][Full Text] [Related]
17. Proteins associated with heat-induced leaf senescence in creeping bentgrass as affected by foliar application of nitrogen, cytokinins, and an ethylene inhibitor. Jespersen D; Huang B Proteomics; 2015 Feb; 15(4):798-812. PubMed ID: 25407697 [TBL] [Abstract][Full Text] [Related]
18. Differentially Expressed Genes Associated with Improved Drought Tolerance in Creeping Bentgrass Overexpressing a Gene for Cytokinin Biosynthesis. Merewitz E; Xu Y; Huang B PLoS One; 2016; 11(11):e0166676. PubMed ID: 27855226 [TBL] [Abstract][Full Text] [Related]
19. AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress. Sun X; Sun C; Li Z; Hu Q; Han L; Luo H Plant Cell Environ; 2016 Jun; 39(6):1320-37. PubMed ID: 26610288 [TBL] [Abstract][Full Text] [Related]
20. Spermine-mediated metabolic homeostasis improves growth and stress tolerance in creeping bentgrass ( Li Z; Cheng B; Wu X; Zhang Y; Feng G; Peng Y Front Plant Sci; 2022; 13():944358. PubMed ID: 36035666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]