These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 27507793)

  • 1. Response of the Pacific inter-tropical convergence zone to global cooling and initiation of Antarctic glaciation across the Eocene Oligocene Transition.
    Hyeong K; Kuroda J; Seo I; Wilson PA
    Sci Rep; 2016 Aug; 6():30647. PubMed ID: 27507793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equatorial heat accumulation as a long-term trigger of permanent Antarctic ice sheets during the Cenozoic.
    Tremblin M; Hermoso M; Minoletti F
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11782-11787. PubMed ID: 27698116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thresholds for Cenozoic bipolar glaciation.
    Deconto RM; Pollard D; Wilson PA; Pälike H; Lear CH; Pagani M
    Nature; 2008 Oct; 455(7213):652-6. PubMed ID: 18833277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atmospheric and oceanic impacts of Antarctic glaciation across the Eocene-Oligocene transition.
    Kennedy AT; Farnsworth A; Lunt DJ; Lear CH; Markwick PJ
    Philos Trans A Math Phys Eng Sci; 2015 Nov; 373(2054):. PubMed ID: 26438285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition.
    Dupont-Nivet G; Krijgsman W; Langereis CG; Abels HA; Dai S; Fang X
    Nature; 2007 Feb; 445(7128):635-8. PubMed ID: 17287807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global cooling during the eocene-oligocene climate transition.
    Liu Z; Pagani M; Zinniker D; Deconto R; Huber M; Brinkhuis H; Shah SR; Leckie RM; Pearson A
    Science; 2009 Feb; 323(5918):1187-90. PubMed ID: 19251622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean.
    Coxall HK; Wilson PA; Pälike H; Lear CH; Backman J
    Nature; 2005 Jan; 433(7021):53-7. PubMed ID: 15635407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orbital climate variability on the northeastern Tibetan Plateau across the Eocene-Oligocene transition.
    Ao H; Dupont-Nivet G; Rohling EJ; Zhang P; Ladant JB; Roberts AP; Licht A; Liu Q; Liu Z; Dekkers MJ; Coxall HK; Jin Z; Huang C; Xiao G; Poulsen CJ; Barbolini N; Meijer N; Sun Q; Qiang X; Yao J; An Z
    Nat Commun; 2020 Oct; 11(1):5249. PubMed ID: 33067447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition.
    Pound MJ; Salzmann U
    Sci Rep; 2017 Feb; 7():43386. PubMed ID: 28233862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea-level fall.
    Merico A; Tyrrell T; Wilson PA
    Nature; 2008 Apr; 452(7190):979-82. PubMed ID: 18432242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wet tropical climate in SE Tibet during the Late Eocene.
    Sorrel P; Eymard I; Leloup PH; Maheo G; Olivier N; Sterb M; Gourbet L; Wang G; Jing W; Lu H; Li H; Yadong X; Zhang K; Cao K; Chevalier ML; Replumaz A
    Sci Rep; 2017 Aug; 7(1):7809. PubMed ID: 28798350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. No extreme bipolar glaciation during the main Eocene calcite compensation shift.
    Edgar KM; Wilson PA; Sexton PF; Suganuma Y
    Nature; 2007 Aug; 448(7156):908-11. PubMed ID: 17713530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Australian shelf sediments reveal shifts in Miocene Southern Hemisphere westerlies.
    Groeneveld J; Henderiks J; Renema W; McHugh CM; De Vleeschouwer D; Christensen BA; Fulthorpe CS; Reuning L; Gallagher SJ; Bogus K; Auer G; Ishiwa T;
    Sci Adv; 2017 May; 3(5):e1602567. PubMed ID: 28508066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2.
    DeConto RM; Pollard D
    Nature; 2003 Jan; 421(6920):245-9. PubMed ID: 12529638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.
    Anagnostou E; John EH; Edgar KM; Foster GL; Ridgwell A; Inglis GN; Pancost RD; Lunt DJ; Pearson PN
    Nature; 2016 May; 533(7603):380-4. PubMed ID: 27111509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition.
    Goldner A; Herold N; Huber M
    Nature; 2014 Jul; 511(7511):574-7. PubMed ID: 25079555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terrestrial cooling in Northern Europe during the eocene-oligocene transition.
    Hren MT; Sheldon ND; Grimes ST; Collinson ME; Hooker JJ; Bugler M; Lohmann KC
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7562-7. PubMed ID: 23610424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased seasonality through the Eocene to Oligocene transition in northern high latitudes.
    Eldrett JS; Greenwood DR; Harding IC; Huber M
    Nature; 2009 Jun; 459(7249):969-73. PubMed ID: 19536261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continental ice in Greenland during the Eocene and Oligocene.
    Eldrett JS; Harding IC; Wilson PA; Butler E; Roberts AP
    Nature; 2007 Mar; 446(7132):176-9. PubMed ID: 17287724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The enigma of Oligocene climate and global surface temperature evolution.
    O'Brien CL; Huber M; Thomas E; Pagani M; Super JR; Elder LE; Hull PM
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25302-25309. PubMed ID: 32989142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.