BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 27507802)

  • 1. Testosterone-dependent sex differences in red blood cell hemolysis in storage, stress, and disease.
    Kanias T; Sinchar D; Osei-Hwedieh D; Baust JJ; Jordan A; Zimring JC; Waterman HR; de Wolski KS; Acker JP; Gladwin MT
    Transfusion; 2016 Oct; 56(10):2571-2583. PubMed ID: 27507802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testosterone replacement therapy in blood donors modulates erythrocyte metabolism and susceptibility to hemolysis in cold storage.
    Alexander K; Hazegh K; Fang F; Sinchar D; Kiss JE; Page GP; DʼAlessandro A; Kanias T
    Transfusion; 2021 Jan; 61(1):108-123. PubMed ID: 33073382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood donor obesity is associated with changes in red blood cell metabolism and susceptibility to hemolysis in cold storage and in response to osmotic and oxidative stress.
    Hazegh K; Fang F; Bravo MD; Tran JQ; Muench MO; Jackman RP; Roubinian N; Bertolone L; DʼAlessandro A; Dumont L; Page GP; Kanias T
    Transfusion; 2021 Feb; 61(2):435-448. PubMed ID: 33146433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sickle Cell Trait Increases Red Blood Cell Storage Hemolysis and Post-Transfusion Clearance in Mice.
    Osei-Hwedieh DO; Kanias T; Croix CS; Jessup M; Xiong Z; Sinchar D; Franks J; Xu Q; M Novelli E; Sertorio JT; Potoka K; Binder RJ; Basu S; Belanger AM; Kim-Shapiro DB; Triulzi D; Lee JS; Gladwin MT
    EBioMedicine; 2016 Sep; 11():239-248. PubMed ID: 27523807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sex-specific genetic modifiers identified susceptibility of cold stored red blood cells to osmotic hemolysis.
    Fang F; Hazegh K; Mast AE; Triulzi DJ; Spencer BR; Gladwin MT; Busch MP; Kanias T; Page GP
    BMC Genomics; 2022 Mar; 23(1):227. PubMed ID: 35321643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red blood cell endothelial nitric oxide synthase does not modulate red blood cell storage hemolysis.
    Kanias T; Wang L; Lippert A; Kim-Shapiro DB; Gladwin MT
    Transfusion; 2013 May; 53(5):981-9. PubMed ID: 22897637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmotic hemolysis is a donor-specific feature of red blood cells under various storage conditions and genetic backgrounds.
    Tzounakas VL; Anastasiadi AT; Valsami SI; Stamoulis KE; Papageorgiou EG; Politou M; Papassideri IS; Kriebardis AG; Antonelou MH
    Transfusion; 2021 Sep; 61(9):2538-2544. PubMed ID: 34146350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex hormone intake in female blood donors: impact on haemolysis during cold storage and regulation of erythrocyte calcium influx by progesterone.
    Fang F; Hazegh K; Sinchar D; Guo Y; Page GP; Mast AE; Kleinman S; Busch MP; Kanias T
    Blood Transfus; 2019 Jul; 17(4):263-273. PubMed ID: 31385799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quality assessment of red blood cell concentrates from blood donors at the extremes of the age spectrum: The BEST collaborative study.
    Cloutier M; Cognasse F; Yokoyama APH; Hazegh K; Mykhailova O; Brandon-Coatham M; Hamzeh-Cognasse H; Kutner JM; Acker JP; Kanias T;
    Transfusion; 2023 Aug; 63(8):1506-1518. PubMed ID: 37387566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intradonor reproducibility and changes in hemolytic variables during red blood cell storage: results of recall phase of the REDS-III RBC-Omics study.
    Lanteri MC; Kanias T; Keating S; Stone M; Guo Y; Page GP; Brambilla DJ; Endres-Dighe SM; Mast AE; Bialkowski W; D'Andrea P; Cable RG; Spencer BR; Triulzi DJ; Murphy EL; Kleinman S; Gladwin MT; Busch MP;
    Transfusion; 2019 Jan; 59(1):79-88. PubMed ID: 30408207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequent blood donations alter susceptibility of red blood cells to storage- and stress-induced hemolysis.
    Kanias T; Stone M; Page GP; Guo Y; Endres-Dighe SM; Lanteri MC; Spencer BR; Cable RG; Triulzi DJ; Kiss JE; Murphy EL; Kleinman S; Gladwin MT; Busch MP; Mast AE;
    Transfusion; 2019 Jan; 59(1):67-78. PubMed ID: 30474858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting storage-dependent damage to red blood cells using nitrite oxidation kinetics, peroxiredoxin-2 oxidation, and hemoglobin and free heme measurements.
    Oh JY; Stapley R; Harper V; Marques MB; Patel RP
    Transfusion; 2015 Dec; 55(12):2967-78. PubMed ID: 26202471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain-specific red blood cell storage, metabolism, and eicosanoid generation in a mouse model.
    Zimring JC; Smith N; Stowell SR; Johnsen JM; Bell LN; Francis RO; Hod EA; Hendrickson JE; Roback JD; Spitalnik SL
    Transfusion; 2014 Jan; 54(1):137-48. PubMed ID: 23721209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sex-related aspects of the red blood cell storage lesion.
    Tzounakas VL; Anastasiadi AT; Drossos PV; Karadimas DG; Valsami SÉ; Stamoulis KE; Papassideri IS; Politou M; Antonelou MH; Kriebardis AG
    Blood Transfus; 2021 May; 19(3):224-236. PubMed ID: 33085592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethnicity, sex, and age are determinants of red blood cell storage and stress hemolysis: results of the REDS-III RBC-Omics study.
    Kanias T; Lanteri MC; Page GP; Guo Y; Endres SM; Stone M; Keating S; Mast AE; Cable RG; Triulzi DJ; Kiss JE; Murphy EL; Kleinman S; Busch MP; Gladwin MT
    Blood Adv; 2017 Jun; 1(15):1132-1141. PubMed ID: 29034365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxic storage of donor red cells preserves deformability after exposure to plasma from adults with sickle cell disease.
    Karafin MS; Field JJ; Ilich A; Li L; Qaquish BF; Shevkoplyas SS; Yoshida T
    Transfusion; 2023 Jan; 63(1):193-202. PubMed ID: 36310401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testosterone supplementation increases red blood cell susceptibility to oxidative stress, decreases membrane deformability, and decreases survival after cold storage and transfusion.
    Tran J; Jackman RP; Muench MO; Hazegh K; Bean SW; Thomas KA; Fang F; Page G; O'Connor K; Roubinian NH; Anawalt BD; Kanias T
    Transfusion; 2024 Jun; ():. PubMed ID: 38884364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Damage to red blood cells during whole blood storage.
    Oh JY; Marques MB; Xu X; Li J; Genschmer K; Gaggar A; Jansen JO; Holcomb JB; Pittet JF; Patel RP
    J Trauma Acute Care Surg; 2020 Aug; 89(2):344-350. PubMed ID: 32301878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Impact of Surgery and Stored Red Blood Cell Transfusions on Nitric Oxide Homeostasis.
    Nagababu E; Scott AV; Johnson DJ; Goyal A; Lipsitz JA; Barodka VM; Berkowitz DE; Frank SM
    Anesth Analg; 2016 Aug; 123(2):274-82. PubMed ID: 27308950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher donor body mass index is associated with increased hemolysis of red blood cells at 42-days of storage: A retrospective analysis of routine quality control data.
    Sparrow RL; Payne KA; Adams GG
    Transfusion; 2021 Feb; 61(2):449-463. PubMed ID: 33231302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.