These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27508367)

  • 1. Application of lactic acid bacteria in removing heavy metals and aflatoxin B1 from contaminated water.
    Elsanhoty RM; Al-Turki IA; Ramadan MF
    Water Sci Technol; 2016; 74(3):625-38. PubMed ID: 27508367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid removal of lead and cadmium from water by specific lactic acid bacteria.
    Halttunen T; Salminen S; Tahvonen R
    Int J Food Microbiol; 2007 Feb; 114(1):30-5. PubMed ID: 17184867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria.
    Teemu H; Seppo S; Jussi M; Raija T; Kalle L
    Int J Food Microbiol; 2008 Jul; 125(2):170-5. PubMed ID: 18471917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aflatoxin B1 binding by dairy strains of lactic acid bacteria and bifidobacteria.
    Peltonen K; el-Nezami H; Haskard C; Ahokas J; Salminen S
    J Dairy Sci; 2001 Oct; 84(10):2152-6. PubMed ID: 11699445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous solution.
    Halttunen T; Collado MC; El-Nezami H; Meriluoto J; Salminen S
    Lett Appl Microbiol; 2008 Feb; 46(2):160-5. PubMed ID: 18028332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1.
    El-Nezami H; Kankaanpaa P; Salminen S; Ahokas J
    Food Chem Toxicol; 1998 Apr; 36(4):321-6. PubMed ID: 9651049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic removal by native and chemically modified lactic acid bacteria.
    Halttunen T; Finell M; Salminen S
    Int J Food Microbiol; 2007 Nov; 120(1-2):173-8. PubMed ID: 17614152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced extraction of heavy metals in the two-step process with the mixed culture of Lactobacillus bulgaricus and Streptococcus thermophilus.
    Chang YC; Choi D; Kikuchi S
    Bioresour Technol; 2012 Jan; 103(1):477-80. PubMed ID: 22019399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Biosorption of Cd(II), Cu(II), Pb(II) and Zn(II) in aqueous solutions by fruiting bodies of macrofungi (Auricularia polytricha and Tremella fuciformis)].
    Mo Y; Pan R; Huang HW; Cao LX; Zhang RD
    Huan Jing Ke Xue; 2010 Jul; 31(7):1566-74. PubMed ID: 20825027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein.
    Kinoshita H; Sohma Y; Ohtake F; Ishida M; Kawai Y; Kitazawa H; Saito T; Kimura K
    Res Microbiol; 2013 Sep; 164(7):701-9. PubMed ID: 23603782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosorption of Heavy Metals by Lactic Acid Bacteria for Detoxification.
    Kinoshita H
    Methods Mol Biol; 2019; 1887():145-157. PubMed ID: 30506256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metal uptake capacity of fresh water algae (Oedogonium westti) from aqueous solution: A mesocosm research.
    Shamshad I; Khan S; Waqas M; Asma M; Nawab J; Gul N; Raiz A; Li G
    Int J Phytoremediation; 2016; 18(4):393-8. PubMed ID: 26515662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lead, cadmium and nickel removal efficiency of white-rot fungus Phlebia brevispora.
    Sharma KR; Giri R; Sharma RK
    Lett Appl Microbiol; 2020 Dec; 71(6):637-644. PubMed ID: 32785942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of copper, lead and cadmium biosorption onto newly isolated bacterium using a Box-Behnken design.
    Choińska-Pulit A; Sobolczyk-Bednarek J; Łaba W
    Ecotoxicol Environ Saf; 2018 Mar; 149():275-283. PubMed ID: 29253787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The capacity of silage inoculant bacteria to bind aflatoxin B
    Ma ZX; Amaro FX; Romero JJ; Pereira OG; Jeong KC; Adesogan AT
    J Dairy Sci; 2017 Sep; 100(9):7198-7210. PubMed ID: 28711253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytic and chemometric assessments of the native probiotic bacteria and inulin effects on bioremediation of lead salts.
    Mirza Alizadeh A; Hosseini H; Mohseni M; Eskandari S; Sohrabvandi S; Hosseini MJ; Tajabadi-Ebrahimi M; Mohammadi-Kamrood M; Nahavandi S
    J Sci Food Agric; 2021 Sep; 101(12):5142-5153. PubMed ID: 33608880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metals sorption from aqueous solutions by Kluyveromyces marxianus: process optimization, equilibrium modeling and chemical characterization.
    Pal R; Tewari S; Rai JP
    Biotechnol J; 2009 Oct; 4(10):1471-8. PubMed ID: 19557798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aflatoxin B1 binding capacity of autochthonous strains of lactic acid bacteria.
    Fazeli MR; Hajimohammadali M; Moshkani A; Samadi N; Jamalifar H; Khoshayand MR; Vaghari E; Pouragahi S
    J Food Prot; 2009 Jan; 72(1):189-92. PubMed ID: 19205485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes.
    Basile A; Sorbo S; Conte B; Cobianchi RC; Trinchella F; Capasso C; Carginale V
    Int J Phytoremediation; 2012 Apr; 14(4):374-87. PubMed ID: 22567718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of exopolysaccharides by Lactobacillus and Bifidobacterium strains of human origin, and metabolic activity of the producing bacteria in milk.
    Salazar N; Prieto A; Leal JA; Mayo B; Bada-Gancedo JC; de los Reyes-Gavilán CG; Ruas-Madiedo P
    J Dairy Sci; 2009 Sep; 92(9):4158-68. PubMed ID: 19700676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.