BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27508376)

  • 1. High performance of nitrogen and phosphorus removal in an electrolysis-integrated biofilter.
    Gao Y; Xie YW; Zhang Q; Yu YX; Yang LY
    Water Sci Technol; 2016; 74(3):714-21. PubMed ID: 27508376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intensified nitrate and phosphorus removal in an electrolysis -integrated horizontal subsurface-flow constructed wetland.
    Gao Y; Xie YW; Zhang Q; Wang AL; Yu YX; Yang LY
    Water Res; 2017 Jan; 108():39-45. PubMed ID: 27863737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intensified nitrogen and phosphorus removal in a novel electrolysis-integrated tidal flow constructed wetland system.
    Ju X; Wu S; Zhang Y; Dong R
    Water Res; 2014 Aug; 59():37-45. PubMed ID: 24784452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient removal of nitrogen and phosphorus in an electrolysis-integrated horizontal subsurface-flow constructed wetland amended with biochar.
    Gao Y; Zhang W; Gao B; Jia W; Miao A; Xiao L; Yang L
    Water Res; 2018 Aug; 139():301-310. PubMed ID: 29660619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of influent nutrient ratios and temperature on simultaneous phosphorus and nitrogen removal in a step-feed CAST.
    Ma J; Peng C; Takigawa A; Wang S; Wang L; Ma N; Liu Y; Peng Y
    Water Sci Technol; 2010; 62(9):2028-36. PubMed ID: 21045328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How the novel integration of electrolysis in tidal flow constructed wetlands intensifies nutrient removal and odor control.
    Ju X; Wu S; Huang X; Zhang Y; Dong R
    Bioresour Technol; 2014 Oct; 169():605-613. PubMed ID: 25103037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-optimisation of phosphorus and nitrogen removal in stormwater biofilters: the role of filter media, vegetation and saturated zone.
    Glaister BJ; Fletcher TD; Cook PL; Hatt BE
    Water Sci Technol; 2014; 69(9):1961-9. PubMed ID: 24804674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous removal of nitrogen and phosphorus by cetylpyridinium bromide modified zeolite.
    Li C; Yao J; Zhang TC; Xing W; Liang Y; Xiang M
    Water Sci Technol; 2017 Dec; 76(11-12):2895-2906. PubMed ID: 29210677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen and phosphorus removed from a subsurface flow multi-stage filtration system purifying agricultural runoff.
    Zhao Y; Huang L; Chen Y
    Environ Technol; 2018 Jul; 39(13):1715-1720. PubMed ID: 28562188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cool temperature performance of a wheat straw biofilter for treating dairy wastewater.
    Shah SB; Bhumbla DK; Basden TJ; Lawrence LD
    J Environ Sci Health B; 2002 Sep; 37(5):493-505. PubMed ID: 12369766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remediation of incomplete nitrification and capacity increase of biofilters at different drinking water treatment plants through copper dosing.
    Wagner FB; Nielsen PB; Boe-Hansen R; Albrechtsen HJ
    Water Res; 2018 Apr; 132():42-51. PubMed ID: 29306091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous removal of di-(2-ethylhexyl) phthalate and nitrogen in a laboratory-scale pre-denitrification biofilter system.
    Cao X; Ai N; Meng X
    Bioresour Technol; 2014 Mar; 156():29-34. PubMed ID: 24480415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous nitrogen and phosphorus removal under low dissolved oxygen conditions.
    Xia SQ; Gao TY; Zhou ZY
    J Environ Sci (China); 2001 Jan; 13(1):46-50. PubMed ID: 11590718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solar-driven, self-sustainable electrolysis for treating eutrophic river water: Intensified nutrient removal and reshaped microbial communities.
    Liu H; Kong T; Qiu L; Xu R; Li F; Kolton M; Lin H; Zhang L; Lin L; Chen J; Sun X; Gao P; Sun W
    Sci Total Environ; 2021 Apr; 764():144293. PubMed ID: 33385655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ammonium removal by a novel oligotrophic Acinetobacter sp. Y16 capable of heterotrophic nitrification-aerobic denitrification at low temperature.
    Huang X; Li W; Zhang D; Qin W
    Bioresour Technol; 2013 Oct; 146():44-50. PubMed ID: 23911816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical removal and selectivity reduction of nitrate from water by (nano) zero-valent iron/activated carbon micro-electrolysis.
    Song N; Xu J; Cao Y; Xia F; Zhai J; Ai H; Shi D; Gu L; He Q
    Chemosphere; 2020 Jun; 248():125986. PubMed ID: 32006831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Denitrification and biofilm growth in a pilot-scale biofilter packed with suspended carriers for biological nitrogen removal from secondary effluent.
    Shi Y; Wu G; Wei N; Hu H
    J Environ Sci (China); 2015 Jun; 32():35-41. PubMed ID: 26040729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DEAMOX--new biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite.
    Kalyuzhnyi S; Gladchenko M; Mulder A; Versprille B
    Water Res; 2006 Nov; 40(19):3637-45. PubMed ID: 16893559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of a 'Transitioned' Infiltration Basin Part 2: Nitrogen and Phosphorus Removals.
    Natarajan P; Davis AP
    Water Environ Res; 2016 Apr; 88(4):291-302. PubMed ID: 26182426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of influent nutrient ratios and hydraulic retention time (HRT) on simultaneous phosphorus and nitrogen removal in a two-sludge sequencing batch reactor process.
    Wang Y; Peng Y; Stephenson T
    Bioresour Technol; 2009 Jul; 100(14):3506-12. PubMed ID: 19324544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.